隐私计算怎么保护数据安全

星环隐私计算平台
Sophon P²C是一款分布式隐私计算平台,集隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的解决方案。以隐私保护为前提,Sophon P²C解决了跨组织协作时无法安全利用各方数据的困境。平台提供多种开箱即用的工具,方便用户在联邦框架下进行数据处理、分析、特征工程等工作,并快速建立机器学习和深度学习模型。加密网络通信模块负责节点间大量多批次加密信息的传输,多种加密安全手段和优异的通信架构,确保平台在大数据量下也能获得卓越的性能。Sophon P²C的多种联邦学习算法适用于各类垂直业务场景,为跨企业AI协作提供安全可靠的平台支持。
隐私计算
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整的解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据的困境。

隐私计算怎么保护数据安全 更多内容

数据安全隐私计算紧密相关、相互促进,共同为数据安全利用与隐私保护提供保障。数据安全隐私计算的基础和目标数据安全涵盖了数据的保密性、完整性和可用性等多方面要求,旨在防止数据被未经授权的访问、泄露和创新手段隐私计算数据安全提供了一系列先进的技术手段,包括多方安全计算、联邦学习、同态加密、零知识证明等。这些技术在不同程度上解决了数据在流通和使用过程中的隐私保护问题,使得数据能够在安全的环境中被、篡改或破坏。隐私计算的出现正是为了在数据处理和共享过程中更好地满足这些数据安全需求,尤其是在涉及多源数据融合、跨域数据协作等复杂场景下,确保数据的保密性和完整性不受损害。隐私计算数据安全的技术支撑充分挖掘和利用。二者协同发展推动数据价值释放与合规应用随着数字化进程的加速,数据已成为企业和社会发展的重要资产,但数据安全问题一直是制约数据流通和共享的关键因素。隐私计算技术的不断发展和应用,为数据安全提供了更有效的解决方案,使得数据能够在安全的前提下实现跨机构、跨领域的流通和共享,从而充分释放数据的价值。
计算。这样的设计不仅保护了原始数据隐私安全,同时也确保了数据计算和分析得以顺利进行。为了实现原始数据不出域,隐私计算采用了多种技术手段。同态加密是其中一种常用的方法。同态加密技术可以将原始数据加密保护。除了同态加密,隐私计算还运用了安全多方计算和联邦学习等技术手段。这些技术可以在不共享原始数据的情况下,实现数据的分析和计算。通过多方协同计算和模型的分布式训练,隐私计算能够在保护数据隐私的同时作为一种新的数据安全技术手段,在保护数据隐私的同时,为数据的利用提供了强大的支持。通过原始数据不出域和密态数据可用不可见等原则的实现,隐私计算能够在数据收集、预处理、模型训练、部署使用以及评估等全流程中实现隐私保护隐私计算的流程涵盖了从数据收集到模型评估的各个环节,每一个步骤都需要进行严格的隐私保护。原始数据不出域是隐私计算的重要原则之一。这意味着原始数据不需要离开其所有者,而是在所有者控制的计算环境中进领域具有广泛的应用前景。用户可以将数据加密后上传到云端或发送给大数据分析系统,而无需担心数据隐私的泄露。同时,密态数据计算和分析结果依然能够满足用户的需求,实现了数据隐私保护与利用的双赢。隐私计算
相关法律法规的不断完善,,对数据的收集、存储、使用、共享等环节的安全隐私保护提出了严格要求。企业和机构为了满足合规要求,积极寻求隐私计算技术的应用,以确保数据处理活动的合法性和安全性。市场信任的建立:在数据成为重要生产要素的时代,数据安全问题直接关系到企业的声誉和市场信任。消费者和合作伙伴越来越关注数据安全隐私保护,企业只有通过采用先进的隐私计算技术,加强数据安全防护,才能赢得市场信任,提升隐私计算数据安全紧密相关,隐私计算数据安全的关键技术之一,为数据安全提供了有力保障,同时数据安全的需求也推动了隐私计算技术的发展。隐私计算数据安全的保障作用数据加密与访问控制加密技术的应用:隐私计算中的同态加密、多方安全计算等技术在数据处理的全生命周期中都运用了加密手段。以同态加密为例,数据在被加密的状态下进行计算和处理,计算结果解密后与明文计算结果相同,这使得数据在存储和传输过程中始终以加密协议和安全机制的约束,从而避免了未经授权的访问和数据泄露风险。数据匿名化与脱敏匿名化处理:在隐私计算中,数据在共享和使用前通常会进行匿名化处理,去除或模糊化与个人身份相关的敏感信息,使得数据接收
行业资讯
安全隐私计算
安全隐私计算是一种在数据处理和计算过程中,能够同时确保数据安全性和隐私性的技术体系。技术原理与特点多种技术融合:融合了密码学、分布式计算、人工智能等多领域技术。如联邦学习通过加密模型参数更新来保护数据隐私安全多方计算利用加密协议使多方在不泄露隐私数据的情况下进行协同计算;同态加密允许直接对密文进行特定类型的计算计算结果解密后与对明文计算结果相同。数据隐私保护:在数据的全生命周期,包括数据收集、存储、传输、处理和共享等各个环节,都采取严格的隐私保护措施。对敏感数据进行加密、脱敏、匿名化等处理,确保数据在使用过程中不被泄露、篡改或滥用。安全计算环境:构建安全计算环境,防止外部攻击和内部数据融合等场景,保障公民隐私和政府数据安全。物联网领域:物联网设备产生大量敏感数据,通过安全隐私计算技术,可在设备端或云端对数据进行隐私保护的处理和分析,实现设备之间的协同工作和数据共享,同时防止用户数据泄露。采用可信执行环境(TEE)、硬件安全模块(HSM)等技术,为计算过程提供隔离和保护,确保计算在可信的环境中进行。应用场景金融领域:用于信贷风险评估、反洗钱、金融市场预测等场景。不同金融机构之间
在处理和分析数据保护数据隐私计算技术,涵盖了多方安全计算、联邦学习、可信执行环境等多种技术,旨在通过技术手段实现数据在流通和使用过程中的隐私保护,使数据在不泄露隐私的情况下发挥其价值。主要技术类型多方安全计算:如上述介绍,重点在于多个参与方之间的数据隐私保护和协同计算。联邦学习:一种机器学习技术,多个参与方在不交换数据的情况下,共同训练一个机器学习模型。通过加密技术和模型参数的交换,实现模型的优化和更新,保护数据隐私。可信执行环境:通过硬件隔离和加密技术,创建一个可信的执行环境,在这个环境中数据可以被安全地处理和计算,外部无法获取内部的敏感信息。特点和优势隐私保护隐私计算的核心优势在于能够在数据处理的各个环节保护数据隐私,防止数据泄露和滥用。数据价值挖掘:在保护隐私的前提下,能够实现数据的流通和共享,促进不同数据源之间的协同合作,挖掘数据的潜在价值。合规性:随着数据安全隐私保护法律法规的日益严格,隐私计算技术有助于企业和机构满足合规要求,避免因数据隐私问题导致的法律风险。。多方安全计算定义:多方安全计算是指在不泄露隐私数据的情况下,多个参与方共同对数据进行计算的技术。它允许各方在自己的私有数据上进行操作,而不需要将数据公开给其他方,最终得到的计算结果与在明文状态下对所有数据
隐私计算与大数据分析的巧妙结合,不仅能够有效保护数据隐私,还能实现大数据的高效分析和处理,为不同场景下的隐私保护需求提供了有力支持。分布式隐私计算:通过将数据分散到多个计算节点上,并使用加密和安全协议来保护数据隐私,分布式隐私计算能够在保护隐私的同时,提高数据处理效率和准确性。这种技术适用于大规模数据处理场景,如金融风控、医疗数据分析等,能够确保数据安全性和隐私性,同时满足业务需求。联邦学习大数据的共享和流通,促进数据的价值发挥。安全多方计算:能够在多个参与方之间保护数据隐私的同时,进行高效的计算和分析。通过使用加密和安全协议,安全多方计算确保了参与方之间的数据安全性和隐私保护,为跨组织分析结果在满足一定隐私要求的同时,仍具有较高的准确性。隐私计算与大数据的结合为数据隐私保护和高效分析处理提供了有力的支持。通过采用分布式隐私计算、联邦学习、安全多方计算、同态加密和差分隐私等技术手段,在保护数据隐私的前提下,实现大数据的高效分析和处理。、跨领域的合作提供了技术支持。同态加密和差分隐私:同态加密可以在不暴露明文数据的情况下进行计算,得到与明文数据相关的结果,从而实现了数据隐私保护和高效分析。而差分隐私则通过添加噪声来保护数据隐私,使得
可能导致财产损失、隐私侵犯等严重后果。隐私计算通过技术手段,保护了个人数据在流通和使用过程中的安全性,降低了个人信息泄露的风险,让个人消费者能够更加放心地参与数字经济活动。对于企业和机构而言,隐私计算治理能力和公共服务水平的重要手段,但如何在开放过程中保障数据安全隐私保护,一直是一个难题。隐私计算技术的应用,可以在保障数据安全的前提下,促进政府数据的开放和共享,推动数据在公共服务、城市规划、政策随着数字化时代的到来,数据成为驱动经济社会发展的重要引擎。然而,数据的共享与利用往往伴随着隐私泄露的风险,如何在保护个人隐私和企业数据安全的同时,实现数据的有效利用,成为了一个亟待解决的问题。隐私。这种计算方式确保了数据安全性,同时实现了多源数据的跨域合作,为数据保护与融合应用提供了有力的技术支持。对于个人消费者而言,在享受数字经济带来的便利时,个人信息安全成为了不容忽视的问题。个人信息的泄露同样是数据协作过程中的重要保障。在数据采集、存储、分析等环节中,企业面临着保护关键信息和商业秘密的艰巨任务。隐私计算技术的应用,不仅有助于保护企业的核心数据资产,还能促进企业与外部合作伙伴之间的数据
行业资讯
隐私计算原理
隐私计算的原理基于一系列复杂的密码学和计算机科学技术,旨在实现数据隐私保护安全共享。以下是隐私计算的几个核心原理:数据加密:隐私计算中的数据处理通常在加密状态下进行,确保数据在传输和存储过程中的安全。同态加密:同态加密允许对加密数据进行计算计算结果在解密后与在原始数据上进行相同计算的结果相同,从而无需解密即可进行数据处理。多方安全计算(MPC):MPC允许多个参与方在保护各自输入隐私的随机噪声来保护个人信息,确保在发布统计数据时,单个数据项对结果的影响被最小化,从而保护个人隐私。可信执行环境(TEE):TEE通过硬件和软件的结合,创建一个隔离的安全区域,数据在这个环境中被处理,确保即使在不安全的外部环境中也能安全地处理敏感数据。联邦学习:联邦学习允许多个节点或设备协同训练模型,而不需要将数据集中到一个中心位置,从而保护数据隐私性。匿名化和去标识化:通过去除或替换数据中的识别信息前提下,共同计算某个函数的结果,而无需暴露各自的输入数据。零知识证明:零知识证明允许一方向另一方证明某个陈述是正确的,而无需透露任何有用的信息,除了该陈述本身的真实性。差分隐私:差分隐私通过添加足够的
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...