联邦学习公司

星环隐私计算平台
。平台提供多种开箱即用的工具,方便用户在联邦框架下进行数据处理、分析、特征工程等工作,并快速建立机器学习和深度学习模型。加密网络通信模块负责节点间大量多批次加密信息的传输,多种加密安全手段和优异的通信架构,确保平台在大数据量下也能获得卓越的性能。Sophon P²C的多种联邦学习算法适用于各类垂直业务场景,为跨企业AI协作提供安全可靠的平台支持。
隐私计算
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整的解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据的困境。

联邦学习公司 更多内容

协作。联邦学习可以应用于多个领域,如医疗健康、金融、能源等。在医疗健康领域,医疗机构、研究机构和患者可以共同参与联邦学习,从而提高疾病预测诊断和治疗的精度和效果。在金融领域,银行、信用卡公司、保险公司可以联合进行反欺诈、信用评估等方面的机器学习,并保护客户的隐私数据。在能源领域,不同的能源公司可以共同进行机器学习,提高能源利用效率、降低能源浪费,从而实现可持续发展。联邦学习的应用前景非常广阔,可以联邦学习是一种保护隐私安全的分布式的机器学习框架,能够让各参与方在不共享数据的前提下,联合进行机器学习。在保护用户隐私、企业数据安全、符合政府法规的基础上,联邦学习可从技术角度打破数据孤岛,实现AI实现更加高效、安全、隐私保护的机器学习联邦学习的核心思想是在不将真实数据集公开的情况下,利用加密、去中心化、分布式等技术,在多个参与方之间共享模型参数,从而达到共同学习的目的。具体来说,联邦学习的更新参数,生成一个全局的模型参数,再将全局模型参数发送给参与方。隐私保护:为保护参与方数据隐私,一般采用加密、差分隐私等手段对数据进行处理。通过联邦学习,参与方能够共同训练一个更加准确的模型,而无
联邦学习与隐私计算紧密相关,联邦学习是隐私计算的一个重要分支,在隐私保护的前提下实现了数据的协同利用和模型训练。基本概念联邦学习:是一种分布式机器学习技术,多个参与方在本地训练机器学习模型,然后将模型参数进行加密聚合,不断迭代优化模型,整个过程中数据始终不离开本地,既保护了数据隐私,又能利用各方数据共同训练出更准确的模型。与隐私计算的关系:联邦学习作为隐私计算的关键技术之一,重点解决了在多参与方数据协同场景下的隐私保护问题,通过加密等技术手段确保各方数据在不泄露隐私的情况下进行模型训练和优化,是隐私计算在机器学习领域的具体应用和创新。技术原理加密通信:在联邦学习中,参与方之间的通信通常采用决策的准确性。医疗领域:不同医疗机构之间可以利用联邦学习技术,在保护患者隐私的前提下,联合训练疾病诊断模型、药物研发模型等,促进医疗数据的共享和利用,推动医学研究和临床实践的发展。物联网领域:众多物联网设备产生大量数据,但这些数据往往涉及用户隐私。通过联邦学习,物联网设备可以在本地训练模型,然后将模型参数上传至云端进行聚合优化,实现设备之间的数据协同利用,同时保护用户隐私。
联邦学习,又称为联邦机器学习、联合学习或联盟学习,其核心思想是在不直接共享原始数据的情况下,通过对中间加密数据的流通与处理,实现多方联合的机器学习训练。这一技术为数据隐私保护与机器学习的结合提供了一种切实可行的方案,有效平衡了数据利用与隐私保护之间的矛盾。在联邦学习的框架中,参与方通常包括数据方、算法方、协调方、计算方、结果方以及任务发起方等角色。各方在保持数据本地化的同时,通过协同工作完成模型的训练和优化。根据参与计算的数据在数据方之间的分布情况不同,联邦学习可以分为横向联邦学习、纵向联邦学习联邦迁移学习三种类型。横向联邦学习适用于数据集特征重叠多而样本重叠少的情况,即各数据方拥有相似的特征空间但样本空间不同。通过横向联邦学习,可以在保护各方数据隐私的前提下,将不同数据源的样本进行联合训练,提升模型的泛化能力。纵向联邦学习则适用于数据集样本重叠多而特征重叠少的情况,即各数据方拥有相似的样本空间但特征空间不同。纵向联邦学习能够整合不同数据源的特征信息,形成更为完整的特征空间,进而提升模型的预测准确性。联邦迁移学习则是将迁移学习联邦学习相结合,利用源域的数据和知识来辅助目标域的学习
隐私计算与联邦学习紧密相关,联邦学习是隐私计算的一个重要分支和应用场景。基本概念隐私计算:指在提供隐私保护的前提下实现数据价值挖掘的技术体系,包括安全多方计算、联邦学习、机密计算、差分隐私等多种技术。联邦学习:一种分布式机器学习框架,允许多个参与方在不共享原始数据的情况下,共同训练一个全局模型。关键技术同态加密:在联邦学习中,同态加密技术可用于对模型参数进行加密,使得在加密状态下进行计算和更新
联邦学习,又名联合学习或联盟学习,是一种允许多个参与方在不共享原始数据的情况下,共同构建和训练机器学习模型的技术。其核心思想在于“数据不出门,算法满地跑”,即原始数据无需离开本地,而算法或模型参数则可以在不同参与方之间安全地传输和更新。联邦学习的系统架构主要可以分为三类:横向联邦学习、纵向联邦学习和迁移学习。它们各自针对不同数据集的差异情况进行优化和设计,以适应不同的应用场景。横向联邦学习适用于。纵向联邦学习则适用于样本重叠较多但特征不同的场景。在这种情况下,各参与方可以将自己的特征数据进行加密处理后发送给中心服务器,由中心服务器进行特征融合和模型训练。通过这种方式,可以在不直接共享原始特征数据的情况下,利用各自的数据优势进行协同学习。迁移学习则是一种更为灵活的联邦学习形式,它允许参与方在模型结构和损失函数上存在一定的差异。通过迁移学习,各参与方可以将自己的知识和经验以模型参数的形式分享给其他参与方,从而实现知识的传递和共享。联邦学习的出现,不仅解决了数据隐私和安全的问题,还促进了多方数据的协同利用和机器学习建模的效率提升。使得不同机构之间可以在保护各自数据资产的同时,共同推进技术的发展和创新。
联邦学习是隐私计算的一个重要分支,二者既有紧密联系,又在概念、技术特点、应用场景等方面存在一些区别。联系目标一致:联邦学习和隐私计算的总体目标都是在保护数据隐私的前提下,实现数据的价值挖掘和共享利用。它们致力于解决数据隐私与数据流通、协同计算之间的矛盾,使得数据在不泄露敏感信息的情况下,能够在不同主体之间进行有效处理和分析。技术融合:在实际应用中,联邦学习常常与其他隐私计算技术相结合,以进一步增强隐私保护效果。例如,在联邦学习的模型训练过程中,可以使用同态加密对模型参数进行加密传输和聚合,防止中间结果被泄露;也可以引入差分隐私技术,在模型更新时添加噪声,提高隐私保护的安全性。区别概念范围隐私计算:是一个更广泛的概念,涵盖了多种在数据处理和计算过程中保护隐私的技术和方法,包括安全多方计算、同态加密、联邦学习、差分隐私、零知识证明等。联邦学习:侧重于在多个数据拥有者之间进行机器学习模型的协同技术实现多方数据的协同计算;同态加密允许在密文上进行特定的计算操作;差分隐私通过添加噪声来保护数据隐私等。联邦学习:其核心特点是数据不出本地,通过加密的模型参数传输和聚合来实现模型的协同训练。在联邦
联邦学习隐私计算是一种结合了联邦学习和隐私计算技术的创新方法,旨在解决在多参与方协作机器学习过程中的数据隐私保护问题。在大数据时代,数据分散在不同的机构或个人手中,形成了数据孤岛。传统的机器学习方法需要将数据集中到一处进行训练,这会带来严重的隐私风险。联邦学习应运而生,它允许各参与方在不共享原始数据的情况下,通过交换加密的模型参数共同训练一个全局模型。而联邦学习隐私计算则是在此基础上,进一步运用
联邦学习与隐私计算是紧密相关且相互促进的两个概念,以下是它们之间的详细关系及相关情况:联系目标一致:都旨在解决在数据隐私保护前提下的数据处理与分析问题。在大数据时代,数据分散在不同的机构或个人手中,而这些数据往往包含敏感信息。联邦学习和隐私计算都致力于在不泄露隐私数据的情况下,实现数据的价值挖掘和共享,打破数据孤岛,促进数据的流通和协同使用。技术融合:联邦学习是隐私计算的重要技术分支和应用场景之一。在联邦学习的过程中,会运用到多种隐私计算技术来确保数据的安全性和隐私性,如加密技术、差分隐私技术等。相互促进:隐私计算技术的发展为联邦学习提供了更强大的隐私保护手段,使其能够在更广泛的场景中应用。而联邦学习的实践也推动了隐私计算技术的不断创新和完善,为隐私计算技术提供了更多实际应用需求和挑战,促使其在性能、安全性等方面不断优化。区别概念侧重:联邦学习侧重于机器学习模型的训练和优化,强调在多个等各个环节。技术手段:联邦学习主要采用的技术包括加密通信、模型参数聚合、梯度加密等,以实现各参与方之间的数据隐私保护和模型协同训练。隐私计算则包括但不限于同态加密、差分隐私、多方安全计算、零知识证明等
星环SophonP²C是企业级隐私计算平台,拥有多项性能及安全认证,平台支持不同场景的隐私计算需求,包括横纵向联邦学习、多方安全计算、基于差分隐私的数据发布、匿踪查询等,为多方数据安全协作提供完整的平台底座。SophonP²C可用于解决跨组织协作时无法安全利用各方数据的难题,助力数据流通应用的合法合规。在保障隐私的前提下,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期,提供多种开箱即用的工具,方便用户进行数据处理、分析、特征工程等工作,可快速进行多方数据统计、分析建模和应用工作。平台拥有的多种适应不同安全和通讯环境的加密安全手段和通信架构,为跨组织的数据协作提供安全、可靠、高效的平台支持。分布式隐私计算平台SophonP²C产品优势:支持多种隐私计算框架,平台易用易部署1.采用同态加密、差分隐私、秘密分享、不经意传输等隐私技术,覆盖联邦学习(FL)、多方安全计算(MPC)、匿踪查询(PIR)、隐私求交(PSI)等多种隐私计算功能。2.支持大数据规模的隐私计算场景,支持亿级数据进行联邦学习、多方安全计算和隐私求交。3.提供页面可视化安装部署,并支持实体部署、容器部署、...
利用星环科技数据云平台TDC打造的基于PaaS平台的绿色轨道交通线网指挥中心,为轨交集团打造技术中台、数据中台、模型中台、业务中台。与传统模式相比,PaaS模式采取集约化部署,能大大提高资源利用率;可为开发人员提供隔离的租户环境,灵活选择所需大数据与AI能力,进行探索分析和数据挖掘。技术中台:统一资源管控,灵活资源分配,快速资源申请与部署。数据中台:全量数据接入;面向应用主题的指标计算与规范化数据存储。模型中台:基于人工智能、深度学习的算法模型,支撑业务分析、评估、与决策。业务中台:采用微服务架构,串联系统功能,打通整合业务应用。通过采集实时能耗、电能质量、设备状态等实时数据和客流信息、列车运营信息、基础信息等非实时数据,基于星环科技智能分析工具Sophon进行建模预测,支撑上层能耗统计与监测应用、能耗综合评估应用,实现行车调度精细化,促进轨道交通绿色低碳发展。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。通过为企业搭建数字化转型的数字底座,星环科技助力政府、金融、能源、...
随着科技和信息技术的快速发展,时空数据已经成为重要的技术支撑和决策工具。与此同时,国内也出现了不少优秀的国产时空数据库产品,不仅在空间分析、时序分析等方面实现了卓越的表现,同时也在存储管理、可视化展示等方面有着出色的成果。不少时空数据库产品已实现了高可靠性、高性能和高稳定性的功能,在交通运输、城市规划、GIS和物流供应链等领域都有着广泛的应用。其中星环科技的分布式时空数据库-TranswarpSpacture就是其中一款优秀的时空数据库产品。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。产品优势原生空间:时空数据类型,针对空间时空数据的特定优化。兼容OGC标准:提供丰富的分析函数,具备复杂分析挖掘能力。支持SQL:基于SQL完成空间分析和轨迹分析,降低产品使用门槛。兼容Po...
行业资讯
边缘计算平台
在边缘计算领域,星环科技研发了边缘计算平台Sophon。Sophon是解决多模态数据集成和治理过程中的边缘化、智能化的云端-边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云-边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。Sophon在智能制造、智能安防、智能工地、智能交通、智能城市、智能校园、智能加油站等城市治理、设备可预测性维护等云边一体场景有着广泛的应用。当前边缘计算作为产业数字化转型核心技术已形成共识,我国也高度重视边缘计算的发展,积极推进边缘计算在工业互联网等多个领域的技术、标准与产业发展。星...
图数据库是一种用于处理图形数据的特殊类型的数据库。它们旨在存储和管理关系和连接,具有比其他类型的数据库更强大的能力。目前国内有众多优秀图数据库产品,星环科技图数据库产品StellarDB其中之一。TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。TranswarpStellarDB优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的...
近年来,随着数字经济的蓬勃发展,数据跨境活动日益频繁,数据处理者的数据出境需求快速增长。为规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全、自由流动,国家互联网信息办公室公布了《数据出境安全评估办法》,9月1日起施行。《数据安全出境评估办法》构建了我国数据出境安全评估的制度,然而企业在具体落地方面,还存在诸如数据分类分级;重要数据识别、存储、管理;数据安全监督;敏感数据防泄露等实际困难,国内迫切需要落实数据安全出境的企业。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,构建明日数据世界。在数据安全与流通方面,星环科技具备一系列产品和解决方案。针对有数据跨境需求的企业,星环科技可以提供一套可落地的企业数据安全出境合规解决方案,为企业提供数据跨境一站式服务,助力企业高效、合规的开展数据流通业务。以某智能车企云端车联网全球化数据安全合规案例为例,针对客户面对的系统内存在大量个人隐私数据,但是没有资产地图;缺乏数据分类分级策略;缺乏个人隐私数据使用、流转的监测与防护;需要敏感资产风险评...
企业选择合适的图数据库需要考虑多方面的因素,包括以下几点:数据集规模:如果需要处理大规模的图形数据,应选择支持水平扩展和集群部署的图数据库。查询需求:不同的图数据库对数据类型和查询需求的支持程度有所不同,应根据实际需求选择。性能和可扩展性:不同的图数据库性能和可扩展性有所不同,应选择性能和可扩展性良好的图数据库。支持程度:选择使用支持程度好的图数据库,可以得到更好的技术支持。维护和成本:选择维护成本低、方便使用的图数据库,能够降低维护成本和使用难度。在选择图数据库时,应根据具体需求进行综合分析、评估和选择。星环科技分布式图数据库是国内比较知名的图数据库产品之一。星环分布式图数据库StellarDB星环科技在图计算领域深耕多年,自主研发了分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB在数据导入、多跳查询和图算法性能方面实现了数倍升级,同时在易用...
行业资讯
数字政府建设
近日,领先的IT市场研究和咨询公司IDC发布2022年数字政府百强榜,梳理出数字政府领域领先的技术供应商,评估了技术提供商的市场能力及市场份额。星环科技作为企业级大数据基础软件开发商,成功入选IDC数字政府百强榜“大数据及数据治理”模块。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。在政府领域,星环科技通过智慧政务数字底座为政府数字化转型建设提供计算、存储、算法等基础能力支撑,归集业务数据,优化业务流程,治理出有价值的数据资源,进行专题分析沉淀数据资产,服务部门之间数据共享与业务协同,服务领导决策与政策制定,服务公众、企业便捷办事。公司产品已被多个部委或省市机关部门使用,助力构建数字化政府,提升治理效率。比如星环科技基于数据云平台TDC为建设上海市数据资源平台提供了底层支撑,将70多个委办局以及16个区县业务库的结构化和非结构化数据进行归集,构建三级数据共享交换体系,保障数据安全,支撑“一网通办”等数据服务能力。此外,根据不...
数据库作为提供数据存储与处理能力的基础软件,是信息系统的基础、信息安全的基石,因此,数据库自主可控和国产化替代已经刻不容缓。兼容性是国产化替代关键,自研数据库更具潜力Oracle数据库发展较早,在国内市场内占领了一定先机,企业经过信息化的长期积累和革新,基于Oracle开发了大量的系统业务。为了能够适配新的国产数据库产品,必须对应用代码进行大量修改,各数据表的数据类型、函数、语法规则需要进行系统、全面的改造,这就要求新的国产数据库对原有数据库能够有很好的兼容性支持,降低迁移的代码改造成本。Oracle经过多年的发展,在SQL语言、性能、实例形态、容灾方案等方面有很多积累扩展。若要实现Oracle数据库的国产化替代,除了要能够提供在性能、容灾能力、安全能力等方面全方位提供对等的能力,首先要解决的就是如何兼容Oracle的大量SQL方言,尤其是Oracle的PL/SQL这一独特的广受欢迎的语法体系。中国信通院《数据库发展研究报告》中表示,“国内关系型数据库产品中多数是基于MySQL和PostgreSQL二次开发的”。因此,这些产品对MySQL、PostgreSQL兼容性较好,但没有体系化的...
星环科技数据底座方案已在多个场景落地应用:广西某水电企业工业大数据生态云平台按照“统一规划、统一设计、统一建设”原则开展适应电力能源需求的“云-雾-端”多级、多云协同云计算架构设计。形成电力能源企业计算云、存储云、网络云、安全云等多云架构体系。打造包含智慧运营中心、设备状态诊断中心、安全应急中心、气象资源中心、智慧营销中心与智慧电厂的核心智慧化平台,实现数字化业务管控、智慧化企业经营和生态化商业服务的完整生态,实现企业的数字化转型。工业大数据生态云平台实施分为平台构建、数据资产治理实施与基础门户建设三个部分。其中IaaS层提供计算资源、存储资源、网络资源等基础设施服务;PaaS层由容器云、微服务治理、DevOps、敏捷开发平台、大数据平台、数据资产管理、统一应用门户等组成,为上层智慧企业应用提供基础能力平台的支撑,未来可进一步扩展人工智能平台、元宇宙、区块链、数字孪生等新技术应用平台;SaaS层应用提供数字化业务管理、智慧化企业运营管控、生态化商业服务等应用,并基于统一应用门户为用户提供交互服务。新能源集控中心是实时数仓在新能源方面的应用,跟水电比较像,比如区域监控中心一体化大数据应用...