电网图数据库应用
Transwarp StellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容 openCypher,并具备2D/3D图展示能力,可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。
电网图数据库应用 更多内容

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件

行业资讯
图数据库应用场景
。政企领域:在国家推行智慧城市项目的背景下,图数据库技术可在智能交通、智能电网、数字政务等场景应用,打通政、企、民三端,服务政企,惠及民生。零售领域:图数据库技术通过整合用户的浏览习惯和购买历史,可以图数据库(GraphDatabase)是一种基于图形模型的数据库,适用于存储、管理和查询关联数据。在图数据库中,数据以节点和边形式表示,其中节点表示实体,边表示实体之间的关系。图数据库的应用场景图数据库的应用场景非常广泛,包括但不限于以下几个方面:社交媒体:社交媒体中的用户和关系可以建模为图结构,使用图数据库可以更方便地管理和查询这些社交数据,实现更精确的社交关系分析。金融:图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。通过在图中存储和分析不同实体之间的关系,可以准确识别欺诈,降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物分析出各类商品的潜在用户群体,实现智能推荐和精准营销,为买家提供良好购物体验的同时,也使商家利益大化。图数据库适用于处理具有复杂关联度数据的场景,这些场景包括但不限于社交媒体、金融、物流、医疗、政企和

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件

行业资讯
电网数据治理
、视频等,整合难度大。数据质量问题突出:由于数据采集设备故障、通信干扰、人为录入错误等因素,导致数据存在缺失、错误、重复等质量问题,影响数据分析和应用的可靠性。数据安全风险高:电网数据涉及国家能源安全和数据质量评估和监控,对发现的问题及时进行治理和优化,包括数据清洗、转换、修复等操作,同时进行元数据管理和数据标准建设。数据共享与应用:在确保数据安全的前提下,建立数据共享平台,实现数据在电网企业内部各部门之间以及与外部相关单位的共享,推动数据在电网运行监控、设备检修、电力市场交易等领域的应用。应用场景电网运行监控与分析:通过对电网实时运行数据的分析,实现对电网状态的实时监控和预警,及时发现和处理电网满意度。发展趋势人工智能与大数据融合:将人工智能技术如深度学习、机器学习等与大数据技术深度融合,实现对电网数据的深度挖掘和智能分析,提高数据治理的效率和效果。区块链技术应用:利用区块链技术的去中心化、不可篡改等特点,在电网数据的安全存储、共享和交易等方面进行应用探索,提升数据的安全性和可信度。云平台与边缘计算协同:构建云平台与边缘计算协同的架构,将部分数据处理和分析任务下沉到边缘侧,实现数据的就地

行业资讯
图数据库应用场景
。政企领域:在国家推行智慧城市项目的背景下,图数据库技术可在智能交通、智能电网、数字政务等场景应用,打通政、企、民三端,服务政企,惠及民生。零售领域:图数据库技术通过整合用户的浏览习惯和购买历史,可以图数据库(GraphDatabase)是一种基于图形模型的数据库,适用于存储、管理和查询关联数据。在图数据库中,数据以节点和边形式表示,其中节点表示实体,边表示实体之间的关系。图数据库的应用场景图数据库的应用场景非常广泛,包括但不限于以下几个方面:社交媒体:社交媒体中的用户和关系可以建模为图结构,使用图数据库可以更方便地管理和查询这些社交数据,实现更精确的社交关系分析。金融:图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。通过在图中存储和分析不同实体之间的关系,可以准确识别欺诈,降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物分析出各类商品的潜在用户群体,实现智能推荐和精准营销,为买家提供良好购物体验的同时,也使商家利益大化。图数据库适用于处理具有复杂关联度数据的场景,这些场景包括但不限于社交媒体、金融、物流、医疗、政企和

行业资讯
图数据库应用场景
。政企领域:在国家推行智慧城市项目的背景下,图数据库技术可在智能交通、智能电网、数字政务等场景应用,打通政、企、民三端,服务政企,惠及民生。零售领域:图数据库技术通过整合用户的浏览习惯和购买历史,可以图数据库(GraphDatabase)是一种基于图形模型的数据库,适用于存储、管理和查询关联数据。在图数据库中,数据以节点和边形式表示,其中节点表示实体,边表示实体之间的关系。图数据库的应用场景图数据库的应用场景非常广泛,包括但不限于以下几个方面:社交媒体:社交媒体中的用户和关系可以建模为图结构,使用图数据库可以更方便地管理和查询这些社交数据,实现更精确的社交关系分析。金融:图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。通过在图中存储和分析不同实体之间的关系,可以准确识别欺诈,降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物分析出各类商品的潜在用户群体,实现智能推荐和精准营销,为买家提供良好购物体验的同时,也使商家利益大化。图数据库适用于处理具有复杂关联度数据的场景,这些场景包括但不限于社交媒体、金融、物流、医疗、政企和

行业资讯
图数据库的应用
图数据库的应用原理是通过查询和分析连接数据,建立关联并对海量数据进行分析和挖掘。与其他类型的数据库相比,图数据库具有操作便捷、数据直观、存储模式灵活和应用场景丰富等优势。因此,图数据库是未来处理复杂数据关系的技术趋势。当前,对图数据库的需求应用场景不断增多。从计算和分析数据的角度来看,图数据库的性能比传统数据库提升了百倍以上。在金融、电信等多个领域都面临着巨大的需求。基于数据关联特征和问题相似性,典型的图数据库应用场景包括:反欺诈、推荐引擎、知识图谱、主数据管理、地理空间分析和社交网络等。星环分布式图数据库-TranswarpStellarDBTranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析表现,StellarDB获得了多家行业权威机构认可,中国信通院重磅发布的2022大数据十大关键词,星环科技作为图计算平台国内代表厂商入选信通院“图计算平台”关键词图谱。此前更是通过了中国信通院图数据库和图计算平台基础能力两项专项测评。
猜你喜欢
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...