医保大数据与数据资产
Transwarp Catalog数据资产目录软件,支持主流数据源的元数据和血缘信息的自动采集、更新、版本管理,统一异构多源的元数据管理来完成全局化的数据资产管理流程。此外 Catalog 通过智能化手段提供数据特征、相似性分析、资产推荐等功能,提效数据应用流程。
医保大数据与数据资产 更多内容

行业资讯
医保数据归集与治理
医保数据归集与治理医保数据归集与治理是医疗保障体系中的重要环节,它关系到医保基金的合理使用、医疗服务的精准监管以及参保人的切身利益。随着信息技术的快速发展,医保数据的规模与复杂性日益增加,如何有效归集并科学治理这些数据,成为当前医保管理中的一项关键任务。医保数据归集是指将分散在不同医疗机构、医保经办机构以及其他相关部门的医保信息进行系统化收集与整合的过程。这些数据包括参保人的基本信息、就医记录公共卫生政策制定,比如通过分析特定疾病的发病率和治疗情况,为疾病防控提供依据;三是提升参保人的服务体验,例如通过数据分析优化医保报销流程,缩短等待时间。医保数据归集与治理是一项系统性工程,需要技术、管理和政策多方面的协同推进。只有做好数据归集与治理,才能充分发挥医保数据的价值,实现医保服务的精准化、智能化和人性化。、费用结算、药品使用情况等。由于医保数据来源广泛,格式多样,归集过程中常常面临数据标准不统一、系统接口不兼容等问题。例如,不同医院使用的信息系统可能由不同厂商开发,数据存储方式和字段定义存在差异,导致

行业资讯
医保数据归集与治理
医保数据归集与治理医保数据归集与治理是医疗保障体系中的重要环节,它关系到医保基金的合理使用、医疗服务的精准监管以及参保人的切身利益。随着信息技术的快速发展,医保数据的规模与复杂性日益增加,如何有效归集并科学治理这些数据,成为当前医保管理中的一项关键任务。医保数据归集是指将分散在不同医疗机构、医保经办机构以及其他相关部门的医保信息进行系统化收集与整合的过程。这些数据包括参保人的基本信息、就医记录公共卫生政策制定,比如通过分析特定疾病的发病率和治疗情况,为疾病防控提供依据;三是提升参保人的服务体验,例如通过数据分析优化医保报销流程,缩短等待时间。医保数据归集与治理是一项系统性工程,需要技术、管理和政策多方面的协同推进。只有做好数据归集与治理,才能充分发挥医保数据的价值,实现医保服务的精准化、智能化和人性化。、费用结算、药品使用情况等。由于医保数据来源广泛,格式多样,归集过程中常常面临数据标准不统一、系统接口不兼容等问题。例如,不同医院使用的信息系统可能由不同厂商开发,数据存储方式和字段定义存在差异,导致

行业资讯
医保数据归集与治理
医保数据归集与治理医保数据归集与治理是医疗保障体系中的重要环节,它关系到医保基金的合理使用、医疗服务的精准监管以及参保人的切身利益。随着信息技术的快速发展,医保数据的规模与复杂性日益增加,如何有效归集并科学治理这些数据,成为当前医保管理中的一项关键任务。医保数据归集是指将分散在不同医疗机构、医保经办机构以及其他相关部门的医保信息进行系统化收集与整合的过程。这些数据包括参保人的基本信息、就医记录公共卫生政策制定,比如通过分析特定疾病的发病率和治疗情况,为疾病防控提供依据;三是提升参保人的服务体验,例如通过数据分析优化医保报销流程,缩短等待时间。医保数据归集与治理是一项系统性工程,需要技术、管理和政策多方面的协同推进。只有做好数据归集与治理,才能充分发挥医保数据的价值,实现医保服务的精准化、智能化和人性化。、费用结算、药品使用情况等。由于医保数据来源广泛,格式多样,归集过程中常常面临数据标准不统一、系统接口不兼容等问题。例如,不同医院使用的信息系统可能由不同厂商开发,数据存储方式和字段定义存在差异,导致

行业资讯
医保数据归集与治理
医保数据归集与治理医保数据归集与治理是医疗保障体系中的重要环节,它关系到医保基金的合理使用、医疗服务的精准监管以及参保人的切身利益。随着信息技术的快速发展,医保数据的规模与复杂性日益增加,如何有效归集并科学治理这些数据,成为当前医保管理中的一项关键任务。医保数据归集是指将分散在不同医疗机构、医保经办机构以及其他相关部门的医保信息进行系统化收集与整合的过程。这些数据包括参保人的基本信息、就医记录公共卫生政策制定,比如通过分析特定疾病的发病率和治疗情况,为疾病防控提供依据;三是提升参保人的服务体验,例如通过数据分析优化医保报销流程,缩短等待时间。医保数据归集与治理是一项系统性工程,需要技术、管理和政策多方面的协同推进。只有做好数据归集与治理,才能充分发挥医保数据的价值,实现医保服务的精准化、智能化和人性化。、费用结算、药品使用情况等。由于医保数据来源广泛,格式多样,归集过程中常常面临数据标准不统一、系统接口不兼容等问题。例如,不同医院使用的信息系统可能由不同厂商开发,数据存储方式和字段定义存在差异,导致

行业资讯
医保数据归集与治理
医保数据归集与治理医保数据归集与治理是医疗保障体系中的重要环节,它关系到医保基金的合理使用、医疗服务的精准监管以及参保人的切身利益。随着信息技术的快速发展,医保数据的规模与复杂性日益增加,如何有效归集并科学治理这些数据,成为当前医保管理中的一项关键任务。医保数据归集是指将分散在不同医疗机构、医保经办机构以及其他相关部门的医保信息进行系统化收集与整合的过程。这些数据包括参保人的基本信息、就医记录公共卫生政策制定,比如通过分析特定疾病的发病率和治疗情况,为疾病防控提供依据;三是提升参保人的服务体验,例如通过数据分析优化医保报销流程,缩短等待时间。医保数据归集与治理是一项系统性工程,需要技术、管理和政策多方面的协同推进。只有做好数据归集与治理,才能充分发挥医保数据的价值,实现医保服务的精准化、智能化和人性化。、费用结算、药品使用情况等。由于医保数据来源广泛,格式多样,归集过程中常常面临数据标准不统一、系统接口不兼容等问题。例如,不同医院使用的信息系统可能由不同厂商开发,数据存储方式和字段定义存在差异,导致

行业资讯
医保数据归集与治理
医保数据归集与治理医保数据归集与治理是医疗保障体系中的重要环节,它关系到医保基金的合理使用、医疗服务的精准监管以及参保人的切身利益。随着信息技术的快速发展,医保数据的规模与复杂性日益增加,如何有效归集并科学治理这些数据,成为当前医保管理中的一项关键任务。医保数据归集是指将分散在不同医疗机构、医保经办机构以及其他相关部门的医保信息进行系统化收集与整合的过程。这些数据包括参保人的基本信息、就医记录公共卫生政策制定,比如通过分析特定疾病的发病率和治疗情况,为疾病防控提供依据;三是提升参保人的服务体验,例如通过数据分析优化医保报销流程,缩短等待时间。医保数据归集与治理是一项系统性工程,需要技术、管理和政策多方面的协同推进。只有做好数据归集与治理,才能充分发挥医保数据的价值,实现医保服务的精准化、智能化和人性化。、费用结算、药品使用情况等。由于医保数据来源广泛,格式多样,归集过程中常常面临数据标准不统一、系统接口不兼容等问题。例如,不同医院使用的信息系统可能由不同厂商开发,数据存储方式和字段定义存在差异,导致

行业资讯
医保数据归集与治理
医保数据归集与治理医保数据归集与治理是医疗保障体系中的重要环节,它关系到医保基金的合理使用、医疗服务的精准监管以及参保人的切身利益。随着信息技术的快速发展,医保数据的规模与复杂性日益增加,如何有效归集并科学治理这些数据,成为当前医保管理中的一项关键任务。医保数据归集是指将分散在不同医疗机构、医保经办机构以及其他相关部门的医保信息进行系统化收集与整合的过程。这些数据包括参保人的基本信息、就医记录公共卫生政策制定,比如通过分析特定疾病的发病率和治疗情况,为疾病防控提供依据;三是提升参保人的服务体验,例如通过数据分析优化医保报销流程,缩短等待时间。医保数据归集与治理是一项系统性工程,需要技术、管理和政策多方面的协同推进。只有做好数据归集与治理,才能充分发挥医保数据的价值,实现医保服务的精准化、智能化和人性化。、费用结算、药品使用情况等。由于医保数据来源广泛,格式多样,归集过程中常常面临数据标准不统一、系统接口不兼容等问题。例如,不同医院使用的信息系统可能由不同厂商开发,数据存储方式和字段定义存在差异,导致

行业资讯
医保数据治理
、准确性和完整性,通过主数据管理平台实现主数据的统一维护和共享。治理技术和工具技术:运用大数据技术,采用数据仓库技术构建医保数据仓库,实现数据的整合和分析;利用人工智能技术,如机器学习算法进行数据质量医保数据治理是对医保领域相关数据进行全面管理和优化的过程,旨在提高医保数据的质量、安全性、可用性和一致性,以下是详细介绍:治理背景和目标背景:随着医保信息化建设的不断推进,医保数据量急剧增长且来源广泛,数据质量参差不齐,存在数据不一致、不准确、不完整等问题,同时数据安全风险也日益凸显。目标:通过医保数据治理,建立统一规范的数据标准,提升数据质量,确保数据安全,实现医保数据的高效共享和利用,为医保决策、监管、服务等提供有力支撑。治理内容数据标准管理:制定统一的医保数据标准,包括数据元标准、代码标准、数据格式标准等,规范医保数据的采集、存储和使用,确保不同地区、不同系统之间医保数据的一致性和可比性。数据质量管理:建立数据质量评估指标体系,如数据准确率、完整率、一致率等,通过数据质量监控工具对医保数据进行定期检查和评估,及时发现并处理数据质量问题,如数据缺失、错误、重复等。数据安全管理:加强

行业资讯
医保数据治理
、准确性和完整性,通过主数据管理平台实现主数据的统一维护和共享。治理技术和工具技术:运用大数据技术,采用数据仓库技术构建医保数据仓库,实现数据的整合和分析;利用人工智能技术,如机器学习算法进行数据质量医保数据治理是对医保领域相关数据进行全面管理和优化的过程,旨在提高医保数据的质量、安全性、可用性和一致性,以下是详细介绍:治理背景和目标背景:随着医保信息化建设的不断推进,医保数据量急剧增长且来源广泛,数据质量参差不齐,存在数据不一致、不准确、不完整等问题,同时数据安全风险也日益凸显。目标:通过医保数据治理,建立统一规范的数据标准,提升数据质量,确保数据安全,实现医保数据的高效共享和利用,为医保决策、监管、服务等提供有力支撑。治理内容数据标准管理:制定统一的医保数据标准,包括数据元标准、代码标准、数据格式标准等,规范医保数据的采集、存储和使用,确保不同地区、不同系统之间医保数据的一致性和可比性。数据质量管理:建立数据质量评估指标体系,如数据准确率、完整率、一致率等,通过数据质量监控工具对医保数据进行定期检查和评估,及时发现并处理数据质量问题,如数据缺失、错误、重复等。数据安全管理:加强
猜你喜欢
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...