保险公司大数据平台建设

星环大数据基础平台
星环大数据基础平台(TDH) 是星环自主研发的一站式多模型大数据基础平台,包括多个大数据存储与分析产品,能够存储 PB 级别的海量数据,可以处理包括关系表、文本、时空地理、图数据、文档、时序、图像等在内的多种数据格式,提供高性能的查询搜索、实时分析、统计分析、预测性分析等数据分析功能。目前 TDH 已经在政府、金融、能源、制造业等十多个行业内落地,支撑如金融风控与营销、智慧制造、城市大脑、智慧交通等多种核心行业应用。

保险公司大数据平台建设 更多内容

定价大数据分析帮助保险公司更精准地评估风险、制定保险产品价格。在传统的保险业务中,风险评估和定价主要依赖于历史数据和经验,难以全面、准确地反映被保险人的风险状况。大数据分析技术的应用,使得保险公司能够解锁保险数仓新姿势:大数据平台如何“神助攻”保险行业数字化转型的浪潮在当今数字经济蓬勃发展的时代,保险行业正处于数字化转型的关键时期。随着大数据、云计算、人工智能等新兴技术的不断涌现和广泛应用背景下,大数据平台构建保险数仓成为保险行业数字化转型的关键举措。通过构建保险数仓,能够整合保险企业内外部的海量数据,打破数据孤岛,实现数据的集中管理和共享。为保险企业的业务决策、产品创新、客户服务等提供全面、准确、及时的数据支持,助力保险企业在数字化浪潮中实现高质量发展。大数据平台保险数仓带来的变革强大的数据整合能力大数据平台能够整合多源数据,打破数据孤岛,为保险数仓提供全面的数据支持。在保险,传统的数据管理方式难以实现有效的整合。大数据平台通过其强大的数据集成工具和技术,能够从各种数据源中抽取数据,并对数据进行清洗、转换和加载(ETL),将其整合到保险数仓中。例如,通过使用ETL工具,可以
提高。在金融领域,大数据应用可以帮助银行和保险公司进行风险评估和欺诈检测;在零售行业,大数据分析能够优化库存管理和精准营销;在医疗健康领域,大数据技术可以辅助疾病诊断和药物研发。值得一提的是,国内的大数据国内的大数据平台和应用公司随着信息技术的迅猛发展,大数据已成为推动社会进步和经济发展的重要力量。在国内,大数据平台和应用公司如雨后春笋般涌现,为各行各业提供了强大的数据支持和智能化解决方案。这些企业,一些平台能够自动识别数据中的异常模式,或者预测未来的趋势变化,为企业决策提供有力支持。大数据应用公司则是将大数据技术具体落地到各个行业的企业。这些公司通过开发各种应用软件和服务,帮助客户实现数据的价值应用公司不仅在传统行业中发挥作用,还在新兴领域如智慧城市、物联网、自动驾驶等方面有着广泛的应用。例如,在智慧城市建设中,大数据技术可以用于交通流量分析、环境监测、公共安全等方面,提升城市管理的智能化。国家层面的大数据战略旨在推动数据资源的开放共享,加强数据安全保障,培育大数据产业生态。许多地方政府也建立了大数据产业园,吸引相关企业入驻,形成产业集群效应。总的来说,国内的大数据平台和应用公司正处于
数据价值,提升电网发展运营水平,提高对社会经济的服务水平。基于这样的情况,国家电网上海市电力公司筹备建设电力大数据实验平台。国内外高度关注大数据技术发展,大数据已上升为我国的国家战略。随着智能电网的深化建设,电力系统生产、运行、销售、管理等过程产生出大量数据,迫切需要利用大数据技术,高效挖掘多源异构电力数据,深度发现电
数据评估其信用风险,快速提供贷款或融资服务。保险风险定价与赔付管理:大数据和人工智能技术帮助保险公司实现更精准的风险定价和更快速的理赔管理,从而提升客户体验并降低运营成本。大数据金融服务平台是一种企业级、分布式、开放、统一的大数据平台,它包括数据接入、数据存储、数据处理、数据分析及数据服务相关组件。这种平台的总体目标是帮助金融机构更高效、更快速地完成金融大数据应用的开发、部署和管理,从以交易为中心转向以数据为中心,以应对更多维、更大量、更实时的数据和互联网业务的挑战。以下是大数据金融服务平台的一些关键功能和特征:数据采集与清洗:平台能够从多个来源采集数据,并进行清洗以提高数据质量。风险管理与信用评估:利用大数据分析和机器学习技术,金融机构可以整合客户的行为、财务、社交数据,建立全面的风险管理模型,实现精准的信用评估。智能投顾与资产管理:数据分析帮助智能投顾平台智能化的客户服务工具,提升客户满意度和使用频率。金融产品创新:金融机构通过数据洞察,基于客户需求和市场趋势创新金融产品,例如结合大数据和人工智能推出动态定价的贷款产品或个性化的保险服务。反洗钱与合规管理
信息化和智能化的关键工具。2.目标市场分析医疗大数据平台的目标市场主要包括各级医疗机构、公共卫生机构、保险公司以及科研机构。这些机构需要处理大量的临床数据、人口健康数据、电子病历等,以实现精准医疗、疾病医疗大数据平台1.引言医疗大数据平台是现代医疗行业的重要组成部分,它通过整合、分析和利用海量的医疗数据,为医疗服务提供决策支持,提升诊疗效率和质量。随着技术的发展,医疗大数据平台已经成为推动医疗预防和健康管理。例如,山西省的医疗大数据基础平台已经成功应用于多家医院,提供高效的数据管理和分析服务。3.数据收集与处理流程数据收集涉及从各种来源获取信息,包括电子病历系统、医学影像系统、实验室报告等虑高性能、高可靠性和高可用性。这通常包括分布式存储系统、大数据处理框架以及实时数据分析工具。5.用户界面设计用户界面应简洁易用,并能直观地展示数据分析结果。这可能包括图表、仪表板和其他可视化工具。6.。数据处理则包括清洗、标准化和整合数据,建立统一的数据资源目录。例如,山西省的平台建立了临床、人口健康等主题的数据仓库,并实现了省级人口健康画像和医疗数据全景地图的构建。4.技术架构设计技术架构设计应考
发现电数据价值,提升电网发展运营水平,提高对社会经济的服务水平。基于这样的情况,国家电网上海市电力公司筹备建设电力大数据实验平台。问题与需求1、数据的统一储存在电力系统不断的生产、运行、管理过程中,会的挑战。2、深度挖掘电力数据价值国网公司希望建设电力大数据数据仓库和数据集市,提供电力大数据应用模拟环境,提供电力大数据应用集成方案。解决方案选用目前主流的分布式技术,面向电力应用研发了大数据基础项目背景国内外高度关注大数据技术发展,大数据已上升为我国的国家战略。随着智能电网的深化建设,电力系统生产、运行、销售、管理等过程产生出大量数据,迫切需要利用大数据技术,高效挖掘多源异构电力数据,深度算法和机器学习算法的调用,以及面向电力应用算法的自定义开发;支持流式数据的实时处理;可对数据进行行列安全控制,安全管理体系做到和Oracle一致。实施效果1、数据模型和信息模型利用大数据应用平台的工作流产生非常大量的数据,每年都有30%的增长。这些数据包含结构化数据,非结构化数据。传统的结构化数据有26.7T,而图形数据、音频数据、以及文档数据合计有300T之多。如何将不同类型的数据统一存储,是非常
来自: 官网 / 案例
、中国银行齐聚一堂,并围绕“大数据3.0时代,如何建设银行+保险大数据平台”这一主题进行圆桌对话。几大银行+保险前沿公司数据洞察、数据关联、数据治理、模型构建、数据应用诸多角度进行了经验分享。通过搭建大数据、交通等行业,推动诸多企业实现数字化转型。04、太平保险-大数据建设经验分享太平金科数据分析平台负责人许崇涛认为,传统保险行业在大数据建设过程面临以下6挑战:数据量增长迅速、数据时效性要求高、用户数多的管理建设理论,推出更适合金融数据资产管理建设建设方案。宇信干从勇表示,与领先大数据平台厂商星环合作让数据资产管理体系建设成为可能。圆桌论坛活动现场,来自恒丰银行、厦门银行、新网银行、太平保险平台和人工智能领域的技术优势,研发出新一代智能大数据平台TDC,为企业提供高效的基础技术平台,赋能部门业务,助力企业的数字化转型,促进数据和应用的生态建设。星环科技的产品目前已应用于金融、能源并发高、保险业务逻辑复杂、小机闪存成本高昂、IT架构复杂。而基于大数据平台的应用能力,将保险行业与大数据、人工智能等技术结合,利用大数据平台的分布式计算能力可以为原系统大大减轻负担,提升业务处理效率
大数据平台建设是一个涉及多个层面的复杂过程,包括数据采集、存储、处理、分析和服务等多个环节。以下是一些关键点和实践案例,可以帮助理解大数据平台建设的各个方面:需求分析与规划阶段业务需求调研:与企业被使用。确定平台目标与功能:根据业务需求,明确大数据平台建设的目标,如提高数据处理效率、实现数据共享与整合、支持数据驱动的决策制定或推动业务创新等。规划大数据平台的功能模块,通常包括数据采集、存储因素,选择最适合的技术组合。设计大数据平台的架构,一般包括数据来源层、数据接入层、数据存储层、数据处理层、数据服务层和应用层。数据采集与存储建设阶段数据采集系统搭建:针对不同类型的数据源,采用相应的内各个业务部门(如销售、市场、财务、生产等)深入沟通,了解他们对数据的使用场景、痛点以及期望从大数据平台获取的价值。梳理业务流程,确定哪些环节产生数据、需要收集什么样的数据以及数据如何在业务流程中流动和、处理、分析、可视化和数据治理等功能。技术选型与架构设计规划:评估不同的大数据技术框架和工具,如分布式存储系统、分布式计算框架、数据仓库、数据挖掘工具和数据可视化工具。根据平台的目标、功能需求和数据规模等
管理体系,加速推动某电器企业数字化转型。为实现数字化转型目标,某电器企业希望与星环科技的合作,构建统一的大数据平台,掌控企业的运营情况;建立公司级综合度量指标体系,统一度量口径、业务目标和交流语言;进行数据归集,挖掘数据价值,通过大数据平台积极探索新型业务价值,支撑业务应用的建设。具体需求如下:1.统一数据标准规范通过大数据公司数据资产进行清洗、转换、整合,实现企业数据标准化、集成化、标签化综合性治理为基础,建立有效的组织保障及制度保障,重点围绕IT治理体系和信息安全体系开展管控建设,为开展大数据平台建设、推动数据治理工作的基础保障支撑。解决方案某电器企业基于星环科技企业级一站式大数据综合平台TDH作为技术平台底座,搭建了统一的大数据异构存储平台,提升多模数据存储能力,为数据治理保障和应用建设提供支撑。治理保障层面,某电器企业基于TDH大数据基础平台,对19个业务系统进行数据归集和质量检查;标准化构建统一的企业信息模型,实现主题数据的融合;收集并统一公司各业务部门核心指标。后依托于大数据平台和治理保障体系,某电器企业构建了园区智慧屏、综合度量平台和质量追溯应用,同时进行了业务
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...