大模型的数据规模是指

什么模型模型指模型具有庞大参数规模和复杂程度机器学习模型。在深度学习领域,模型通常是具有数百万到数十亿参数神经网络模型。这些模型需要大量计算资源和存储空间来训练和存储,并且往往。然而,模型也面临一些挑战。首先是资源消耗问题,模型需要大量计算资源、存储空间和能源来进行训练和推理,对计算设备要求较高。其次训练时间较长,由于模型参数规模增大,模型训练过程会更加耗时需要进行分布式计算和特殊硬件加速技术。模型设计和训练旨在提供更强大、更准确模型性能,以应对更复杂、更庞大数据集或任务。模型通常能够学习到更细微模式和规律,具有更强泛化能力和表达能力。除此之外,模型数据需求也较高,如果训练数据不充足或不平衡,可能会导致模型过拟合或性能下降。星环科技提供模型训练工具,帮助企业打造自己专属模型星环科技在行业内首先提出行业大模型应用创新场景语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用语言模型模型持续提升。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业星环金融模型无涯,以及大数据分析模型SoLar“求索”。

大模型的数据规模是指 更多内容

模型数据用于训练和优化大型模型大规模数据集合,模型具备强大性能和广泛知识基础。通常包括:预训练语料库通用预训练语料库:包含来自不同领域和主题大规模文本数据混合。其目标为自然语言处理任务提供通用语言知识和数据资源,使模型具备广泛语言理解和生成能力。特定领域预训练语料库:专门包含特定领域或主题相关数据,如金融、医疗、法律、交通、数学等,旨在为模型提供专业知识,使其在特定医疗诊断和协助等。偏好数据集组成及反馈形式:一系列指令集合,由具有不同响应指令对以及来自人类或其他模型反馈组成,反馈信息通常通过投票、排序、评分或其他形式比较表现出来。评估数据集用于对训练好模型进行性能评估,以了解模型在不同任务和场景下表现。特定任务数据集涵盖了各种传统自然语言处理任务数据集,如分类、摘要、翻译、问答等。这些数据集针对特定任务进行标注和整理,可用于训练和评估模型在相应任务上性能,帮助模型更好地理解和处理不同类型自然语言任务。领域任务中表现更出色。指令微调数据集构建方式:由一系列“指令输入”和“答案输出”文本对组成,构建方式包括手动创建、模型生成、收集和改进现有的开源数据集以及上述三种方法结合。主要类别:分为通用指令
模型训练平台提供必要计算资源和工具,用于训练大规模机器学习模型环境。这些平台通常包括高性能计算资源如GPU和TPU,以及数据存储和处理能力,支持深度学习框架,以便构建和优化复杂神经网络模型。例如,星环科技模型训练平台就集成了其在大数据处理、存储和计算方面的优势,为用户提供高性能计算资源、大规模数据管理能力以及深度学习框架支持。星环语言模型运营平台——SophonLLMOps为了帮助企业用户基于模型构建未来应用,星环科技推出了模型持续提升和开发工具SophonLLMOps,实现领域模型训练、上架和选代。SophonLLMOps服务于模型开发者,帮助企业快捷地构建自己行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代”人工智能应用。
模型平台提供大规模预训练模型服务平台,这些模型拥有数十亿甚至数千亿个参数,能够在自然语言处理、计算机视觉、语音识别等任务中表现出色。根据最新报告,2023年中国大模型平台及相关应用市场规模达到了17.65亿元人民币,显示出这一领域快速发展趋势。模型平台通常包括通用模型和行业大模型两大类。通用模型适用于广泛任务和场景,而行业大模型则针对特定行业或领域特定需求进行优化。例如,在医疗、金融、教育等行业,有专门模型来解决行业内复杂问题。选择最适合模型平台时,需要考虑多个因素,如模型性能、应用场景匹配度、技术支持和服务等。主流模型开发平台提供了丰富工具和资源,帮助开发者快速构建和部署基于模型应用。星环语言模型运营平台-SophonLLMOps为了帮助企业用户基于模型构建未来应用,,星环科技推出了模型持续提升和开发工具SophonLLMOps,实现领域模型训练、上架和选代。SophonLLMOps服务于模型开发者,帮助企业快捷地构建自己行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。
模型应用开发大规模预训练模型集成到具体应用场景中,以解决实际问题或提供增值服务过程。通常涉及以下几个关键步骤:需求分析:明确应用目标和用户需求,确定模型如何帮助实现这些目标。模型选择与微调:根据应用场景选择合适模型,并进行必要微调以适应特定任务或领域。API设计与封装:将模型功能封装为易于调用API接口,以便其他应用程序可以利用这些功能。系统集成:将模型API集成到现有系统架构中,确保与前端界面和其他后端服务无缝连接。性能优化:对模型在实际环境中运行效率和资源消耗进行优化,确保其能够高效稳定地运行。测试与验证:通过单元测试、集成测试和用户验收测试来验证应用功能和性能。部署与监控:在生产环境中部署应用,并持续监控其性能和稳定性,及时处理任何潜在问题。维护与更新:根据用户反馈和技术进步定期对应用进行维护和更新,保持其竞争力和实用性。星环科技在模型应用开发方面拥有丰富经验和技术支持能力,能够帮助企业快速构建基于模型创新应用。
什么通用模型?通用模型能够处理多领域、多任务大规模预训练模型。这些模型通过在丰富数据集上进行预训练,能够学习到更广泛知识和语言表示能力,通常具有更好语义理解和生成能力。通用模型设计旨在解决传统模型面临领域依赖性、规模限制和任务特定训练需求等问题。它们可以用于多领域文本分类、命名实体识别、句子关系识别、情感分析等任务。星环科技提供模型训练工具,帮助企业打造自己专属业务特点领域语言模型”;第二,帮助客户将原型语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用语言模型模型持续提升。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业星环金融模型无涯,以及大数据分析模型SoLar“求索”。模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用语言模型”训练/微调,得到“满足自身
行业资讯
模型部署
模型部署将训练好大规模深度学习模型集成到实际应用系统中过程。这包括但不限于以下步骤:模型优化:在部署前,可能需要对模型进行优化,如量化、剪枝或蒸馏,以减少计算资源需求和提高运行效率。环境能够正确处理预期输入并产生正确输出。监控与维护:部署后持续监控模型性能,收集运行数据以评估其长期表现,并根据需要进行维护或更新。星环科技在模型部署方面提供全面的支持,包括技术咨询、环境搭建、性能优化等服务,确保模型能够在用户应用场景中高效稳定地运行。准备:设置运行模型所需硬件和软件环境,确保与训练时环境兼容。API封装:将模型封装为API服务,以便其他应用程序可以通过调用API来使用模型功能。集成测试:在实际环境中测试模型性能和稳定性,确保其
什么语言模型?语言模型基于深度学习大规模神经网络模型,用于自然语言处理任务。这些模型被训练来理解和生成人类语言,并具有广泛语言理解和生成能力。语言模型通常由多层神经网络组成,包括输入语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用语言模型模型持续提升。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业星环金融模型无涯,以及大数据分析模型SoLar“求索”。层、隐藏层和输出层。输入层将文本转化为数值向量表示,隐藏层通过学习文本内在表示来提取语义信息,输出层根据任务不同进行相应计算。语言模型应用非常广泛,包括自然语言理解、机器翻译、问答系统、文本生成等。通过使用语言模型,可以改善和加强这些应用性能,并提供更准确和流畅自然语言处理能力。星环科技提供模型训练工具,帮助企业打造自己专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出
行业资讯
模型平台
模型平台基于大规模参数机器学习模型构建平台,这些平台通常提供模型训练、部署、推理等服务,支持多种应用场景。以下模型平台详细阐述:定义模型平台基于具有大规模参数和复杂计算结构机器学习模型构建平台。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。模型平台设计目的为了提高模型表达能力和预测性能,能够处理更加复杂任务和数据。特点巨大规模模型包含数十亿个参数,模型小可以达到数百GB甚至更大。涌现能力:当模型训练数据突破一定规模时,模型会涌现出之前小模型所没有的复杂能力和特性。更好性能和泛化能力:模型通常具有更强大学习能力和泛化能力。强大计算资源:训练模型通常需要数百甚至上千个GPU,以及大量时间。应用场景自然语言处理:语言模型(LLM)模型子分类,专门通过处理大量文本数据来理解和生成人类语言,执行各种自然语言处理任务,能够在各种任务上表现出色。多任务学习:模型通常会一起学习多种不同任务,如自然语言处理中机器翻译、文本摘要、问答系统等。大数据训练:模型需要海量数据来训练,通常在TB以上甚至PB级别的数据
模型训练语料用于训练模型大量文本、语音、图像等多模态数据,其规模、质量和多样性对模型性能和效果至关重要。以下具体介绍:来源与构成来源广泛:包括互联网公开数据,如新闻网站、社交媒体行业专业数据,如医疗领域病历、医学文献,金融领域财务报告、交易数据等,可使模型在特定领域表现更出色。特点与要求大规模:通常需要数十亿甚至更多数据单元,以让模型学习到足够丰富语言模式和知识,但也、博客等;学术文献和研究报告;各类书籍和电子书;政府公开数据;企业内部数据等。通用语料与专用语料结合:通用语料如百科知识、文学作品等,能为模型提供广泛基础知识和语言表达能力。专用语料则是针对特定领域或要注意避免数据冗余。高质量:应具备准确性、一致性、连贯性等特点,避免错误、噪声和重复内容,以确保模型学习到正确和有用知识。多样性:涵盖不同领域、主题、风格、语言表达方式和文化背景,有助于提高模型泛化能力和鲁棒性,使其能更好地适应各种不同输入和任务需求。时效性:需要及时更新,以反映最新语言用法、知识和社会现象,使模型能够生成符合当前实际情况输出。作用与意义知识储备:为模型提供丰富词汇
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...