大模型 微调 组织

模型高效微调是通过参数高效微调技术,如加性微调、选择性微调、重参数化微调及混合微调等方法,在减少计算成本和训练时间的同时,提升模型在下游任务中的性能表现,使其能更好地适应各种特定应用场景。高效微调单个预训练模型适应多种任务,无需为每个任务训练多个模型,提高了模型的通用性和可扩展性。应用案例自然语言处理:如情感分析、文本分类、机器翻译等任务,通过高效微调可使模型在特定领域的文本数据上表现更优,为机器人:针对特定行业或领域的知识和问题,对模型进行微调,使其能够更准确地理解用户咨询并提供专业的解答和建议,提高智能客服和聊天机器人的服务质量和效率。的优势节省计算资源:传统全参数微调计算成本高,而高效微调只调整小部分参数,降低了对计算资源的需求。缩短训练时间:减少了需训练的参数数量,从而加快模型训练速度,让研究人员和开发者能更快速地进行实验和迭代,尝试不同模型、数据集和技术。提升模型性能:在有限的数据和计算资源下,高效微调可使模型更好地适应特定任务,避免过拟合等问题,提高模型在下游任务中的性能表现。便于多任务适配:可通过集成任务特定参数,使

大模型 微调 组织 更多内容

模型高效微调是通过参数高效微调技术,如加性微调、选择性微调、重参数化微调及混合微调等方法,在减少计算成本和训练时间的同时,提升模型在下游任务中的性能表现,使其能更好地适应各种特定应用场景。高效微调单个预训练模型适应多种任务,无需为每个任务训练多个模型,提高了模型的通用性和可扩展性。应用案例自然语言处理:如情感分析、文本分类、机器翻译等任务,通过高效微调可使模型在特定领域的文本数据上表现更优,为机器人:针对特定行业或领域的知识和问题,对模型进行微调,使其能够更准确地理解用户咨询并提供专业的解答和建议,提高智能客服和聊天机器人的服务质量和效率。的优势节省计算资源:传统全参数微调计算成本高,而高效微调只调整小部分参数,降低了对计算资源的需求。缩短训练时间:减少了需训练的参数数量,从而加快模型训练速度,让研究人员和开发者能更快速地进行实验和迭代,尝试不同模型、数据集和技术。提升模型性能:在有限的数据和计算资源下,高效微调可使模型更好地适应特定任务,避免过拟合等问题,提高模型在下游任务中的性能表现。便于多任务适配:可通过集成任务特定参数,使
模型高效微调是通过参数高效微调技术,如加性微调、选择性微调、重参数化微调及混合微调等方法,在减少计算成本和训练时间的同时,提升模型在下游任务中的性能表现,使其能更好地适应各种特定应用场景。高效微调单个预训练模型适应多种任务,无需为每个任务训练多个模型,提高了模型的通用性和可扩展性。应用案例自然语言处理:如情感分析、文本分类、机器翻译等任务,通过高效微调可使模型在特定领域的文本数据上表现更优,为机器人:针对特定行业或领域的知识和问题,对模型进行微调,使其能够更准确地理解用户咨询并提供专业的解答和建议,提高智能客服和聊天机器人的服务质量和效率。的优势节省计算资源:传统全参数微调计算成本高,而高效微调只调整小部分参数,降低了对计算资源的需求。缩短训练时间:减少了需训练的参数数量,从而加快模型训练速度,让研究人员和开发者能更快速地进行实验和迭代,尝试不同模型、数据集和技术。提升模型性能:在有限的数据和计算资源下,高效微调可使模型更好地适应特定任务,避免过拟合等问题,提高模型在下游任务中的性能表现。便于多任务适配:可通过集成任务特定参数,使
模型高效微调是通过参数高效微调技术,如加性微调、选择性微调、重参数化微调及混合微调等方法,在减少计算成本和训练时间的同时,提升模型在下游任务中的性能表现,使其能更好地适应各种特定应用场景。高效微调单个预训练模型适应多种任务,无需为每个任务训练多个模型,提高了模型的通用性和可扩展性。应用案例自然语言处理:如情感分析、文本分类、机器翻译等任务,通过高效微调可使模型在特定领域的文本数据上表现更优,为机器人:针对特定行业或领域的知识和问题,对模型进行微调,使其能够更准确地理解用户咨询并提供专业的解答和建议,提高智能客服和聊天机器人的服务质量和效率。的优势节省计算资源:传统全参数微调计算成本高,而高效微调只调整小部分参数,降低了对计算资源的需求。缩短训练时间:减少了需训练的参数数量,从而加快模型训练速度,让研究人员和开发者能更快速地进行实验和迭代,尝试不同模型、数据集和技术。提升模型性能:在有限的数据和计算资源下,高效微调可使模型更好地适应特定任务,避免过拟合等问题,提高模型在下游任务中的性能表现。便于多任务适配:可通过集成任务特定参数,使
模型高效微调是通过参数高效微调技术,如加性微调、选择性微调、重参数化微调及混合微调等方法,在减少计算成本和训练时间的同时,提升模型在下游任务中的性能表现,使其能更好地适应各种特定应用场景。高效微调单个预训练模型适应多种任务,无需为每个任务训练多个模型,提高了模型的通用性和可扩展性。应用案例自然语言处理:如情感分析、文本分类、机器翻译等任务,通过高效微调可使模型在特定领域的文本数据上表现更优,为机器人:针对特定行业或领域的知识和问题,对模型进行微调,使其能够更准确地理解用户咨询并提供专业的解答和建议,提高智能客服和聊天机器人的服务质量和效率。的优势节省计算资源:传统全参数微调计算成本高,而高效微调只调整小部分参数,降低了对计算资源的需求。缩短训练时间:减少了需训练的参数数量,从而加快模型训练速度,让研究人员和开发者能更快速地进行实验和迭代,尝试不同模型、数据集和技术。提升模型性能:在有限的数据和计算资源下,高效微调可使模型更好地适应特定任务,避免过拟合等问题,提高模型在下游任务中的性能表现。便于多任务适配:可通过集成任务特定参数,使
模型高效微调是通过参数高效微调技术,如加性微调、选择性微调、重参数化微调及混合微调等方法,在减少计算成本和训练时间的同时,提升模型在下游任务中的性能表现,使其能更好地适应各种特定应用场景。高效微调单个预训练模型适应多种任务,无需为每个任务训练多个模型,提高了模型的通用性和可扩展性。应用案例自然语言处理:如情感分析、文本分类、机器翻译等任务,通过高效微调可使模型在特定领域的文本数据上表现更优,为机器人:针对特定行业或领域的知识和问题,对模型进行微调,使其能够更准确地理解用户咨询并提供专业的解答和建议,提高智能客服和聊天机器人的服务质量和效率。的优势节省计算资源:传统全参数微调计算成本高,而高效微调只调整小部分参数,降低了对计算资源的需求。缩短训练时间:减少了需训练的参数数量,从而加快模型训练速度,让研究人员和开发者能更快速地进行实验和迭代,尝试不同模型、数据集和技术。提升模型性能:在有限的数据和计算资源下,高效微调可使模型更好地适应特定任务,避免过拟合等问题,提高模型在下游任务中的性能表现。便于多任务适配:可通过集成任务特定参数,使
模型高效微调是通过参数高效微调技术,如加性微调、选择性微调、重参数化微调及混合微调等方法,在减少计算成本和训练时间的同时,提升模型在下游任务中的性能表现,使其能更好地适应各种特定应用场景。高效微调单个预训练模型适应多种任务,无需为每个任务训练多个模型,提高了模型的通用性和可扩展性。应用案例自然语言处理:如情感分析、文本分类、机器翻译等任务,通过高效微调可使模型在特定领域的文本数据上表现更优,为机器人:针对特定行业或领域的知识和问题,对模型进行微调,使其能够更准确地理解用户咨询并提供专业的解答和建议,提高智能客服和聊天机器人的服务质量和效率。的优势节省计算资源:传统全参数微调计算成本高,而高效微调只调整小部分参数,降低了对计算资源的需求。缩短训练时间:减少了需训练的参数数量,从而加快模型训练速度,让研究人员和开发者能更快速地进行实验和迭代,尝试不同模型、数据集和技术。提升模型性能:在有限的数据和计算资源下,高效微调可使模型更好地适应特定任务,避免过拟合等问题,提高模型在下游任务中的性能表现。便于多任务适配:可通过集成任务特定参数,使
模型高效微调是通过参数高效微调技术,如加性微调、选择性微调、重参数化微调及混合微调等方法,在减少计算成本和训练时间的同时,提升模型在下游任务中的性能表现,使其能更好地适应各种特定应用场景。高效微调单个预训练模型适应多种任务,无需为每个任务训练多个模型,提高了模型的通用性和可扩展性。应用案例自然语言处理:如情感分析、文本分类、机器翻译等任务,通过高效微调可使模型在特定领域的文本数据上表现更优,为机器人:针对特定行业或领域的知识和问题,对模型进行微调,使其能够更准确地理解用户咨询并提供专业的解答和建议,提高智能客服和聊天机器人的服务质量和效率。的优势节省计算资源:传统全参数微调计算成本高,而高效微调只调整小部分参数,降低了对计算资源的需求。缩短训练时间:减少了需训练的参数数量,从而加快模型训练速度,让研究人员和开发者能更快速地进行实验和迭代,尝试不同模型、数据集和技术。提升模型性能:在有限的数据和计算资源下,高效微调可使模型更好地适应特定任务,避免过拟合等问题,提高模型在下游任务中的性能表现。便于多任务适配:可通过集成任务特定参数,使
模型高效微调是通过参数高效微调技术,如加性微调、选择性微调、重参数化微调及混合微调等方法,在减少计算成本和训练时间的同时,提升模型在下游任务中的性能表现,使其能更好地适应各种特定应用场景。高效微调单个预训练模型适应多种任务,无需为每个任务训练多个模型,提高了模型的通用性和可扩展性。应用案例自然语言处理:如情感分析、文本分类、机器翻译等任务,通过高效微调可使模型在特定领域的文本数据上表现更优,为机器人:针对特定行业或领域的知识和问题,对模型进行微调,使其能够更准确地理解用户咨询并提供专业的解答和建议,提高智能客服和聊天机器人的服务质量和效率。的优势节省计算资源:传统全参数微调计算成本高,而高效微调只调整小部分参数,降低了对计算资源的需求。缩短训练时间:减少了需训练的参数数量,从而加快模型训练速度,让研究人员和开发者能更快速地进行实验和迭代,尝试不同模型、数据集和技术。提升模型性能:在有限的数据和计算资源下,高效微调可使模型更好地适应特定任务,避免过拟合等问题,提高模型在下游任务中的性能表现。便于多任务适配:可通过集成任务特定参数,使
行业资讯
模型微调
模型微调是一个复杂的过程,涉及多个步骤和技术。以下是模型微调的主要方法和步骤:数据准备选择数据集:根据目标任务选择相关性高的数据集,例如,如果目标是提高文本分类的准确性,那么应选择包含大量分类标签的文本数据。数据预处理:对数据进行清洗、分词、编码等预处理操作。选择基础模型预训练模型选择:选择一个预训练好的语言模型。设定微调参数超参数设置:设定学习率、训练轮次(epochs)、批处理大小(batchsize)等超参数。其他超参数:根据需要设定权重衰减、梯度剪切等。微调流程加载模型和权重:加载预训练的模型和权重。模型修改:根据任务需求对模型进行必要的修改,如更改输出层。损失函数和优化器:选择合适的损失函数和优化器。微调训练:使用选定的数据集进行微调训练,包括前向传播、损失计算、反向传播和权重更新。微调方法全量微调:利用特定任务数据调整预训练模型的所有参数,以充分适应新任务。参数高效微调:仅更新模型中的部分参数,显著降低训练时间和成本.微调后的评估和部署模型评估:在训练过程中,使用验证集对模型进行定期评估,并根据评估结果调整超参数或微调策略。测试模型性能:在微调完成后,使用测试集对
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。