大模型的介绍

行业资讯
大模型科普
大模型科普指的是对大规模预训练模型的基本概念、工作原理、应用领域和技术细节的普及性介绍。大模型是在海量数据上训练的深度学习模型,拥有数百万到数十亿的参数,能够执行复杂的自然语言处理任务,如文本生成、翻译、问答和情感分析等。它们通过自我学习从大量文本中提取模式和结构,从而提供准确、连贯和自然的输出。大模型科普主要涉及以下几个方面:大模型的定义:大模型是指具有大规模参数和复杂计算结构的机器学习模型。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型的特点:大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。它们展现出类似人类的智能,能够从原始训练数据中自动学习并发现新的、更高层次的特征和模式,这种能力被称为“涌现能力”。大模型的分类:大模型可以分为通用大模型、行业大模型和垂直大模型。通用大模型可以在多个领域和任务上通用,行业大模型针对特定行业或领域,而垂直大模型针对特定任务或场景。大模型与小模型的区别:小模型通常参数较少、层数较浅,适用于
大模型的介绍 更多内容

行业资讯
大模型应用场景有哪些?
随着数据的快速增长和计算能力的提升,大模型在各个领域发挥着越来越重要的作用。下面将介绍几个常见的大模型应用场景。自然语言处理(NLP):在自然语言处理领域,大模型被广泛用于语言模型、机器翻译、问答系统等任务。通过使用大规模的语料库进行训练,大模型可以更好地理解语言的含义和语境,并生成更准确的文本。计算机视觉(CV):在计算机视觉领域,大模型用于目标检测、图像分类、图像生成等任务。通过在大规模图像数据集上进行训练,大模型可以提取更深入和高级的特征,从而提高图像识别和理解的准确性。金融风险管理:在金融领域,大模型被应用于风险预测、市场预测和欺诈检测等方面。通过处理大量的市场数据和交易记录,大模型可以分析市场趋势和风险,并提供有力的决策支持。医疗诊断:在医疗领域,大模型被应用于疾病诊断、影像解读以及药物研发等方面。通过处理大量的患者数据和医学图像,大模型可以辅助医生进行准确的诊断和治疗。交通与城市规划:在交通和城市规划领域,大模型可以帮助优化交通网络、提高交通流量和安全性等方面。通过使用大规模的交通数据和城市数据,大模型可以模拟和预测城市交通的运行情况,并提供优化交通规划的决策支持。大模型

行业资讯
大模型落地应用的多个领域
新闻生产的速度。用于文案创作,如广告文案、产品介绍、营销邮件等。根据产品的特点和目标受众,大模型能够生成具有吸引力的文案。例如,为一款美容产品生成强调其功效和用户体验的广告文案,以吸引消费者购买。优势与大模型的落地应用正在多个领域和行业中逐步展开,以下是一些具体的应用场景和进展:1.智能客服领域应用方式:大模型可以理解用户咨询的问题,并生成准确的回答。例如,当用户询问产品的功能、使用方法、故障排除等问题时,大模型能够根据预先训练的知识和规则进行回答。通过自然语言处理技术,它可以处理多种语言表述,无论是清晰明确的问题还是模糊、带有情绪的问题。实现多轮对话功能。在对话过程中,大模型能够记住之前的对话内容,根据上下文提供连贯的回答,引导用户解决问题。优势与效果:提高客服效率,能够同时处理多个用户的咨询,减少用户等待时间。据统计,采用大模型的智能客服系统可以将平均响应时间缩短至数秒,大大提升了用户生成领域应用方式:在新闻媒体行业,大模型可以根据新闻事件的线索和数据生成新闻稿件。例如,体育赛事的新闻报道,大模型可以根据比赛结果、关键球员数据等信息快速生成新闻内容,编辑人员再进行审核和修改,提高

行业资讯
大模型的优势
大模型(LargeLanguageModels,LLM)的主要优势:强大的性能表现高精度与泛化能力:大模型拥有大量参数,能够更精确地拟合复杂的数据分布,从而在处理各种复杂任务时,如自然语言处理、语音识别、图像生成等,展现出更高的准确性和泛化能力。高预测能力:大模型通常能够在大数据集上捕捉更多细节和模式,进而提供更准确的预测和决策支持。比如在金融领域,通过对海量金融数据的学习和分析,大模型可以更精准地预测市场趋势、风险评估等,帮助投资者做出更明智的决策。丰富的应用场景广泛适用性:大模型具有很强的通用性和可扩展性,可以根据不同的需求和应用场景进行定制和改造,从而适用于众多领域。赋能行业升级:能够更新,大模型能够持续提升其性能和表现,更好地适应不断变化的环境和需求。快速迭代优化:借助强大的计算资源和先进的算法,大模型能够快速进行迭代优化,不断改进和提升模型的性能。研究人员可以通过调整模型的结构、参数等,使其在准确性、效率等方面得到进一步提高,以更好地满足实际应用的需求。推动技术创新与发展引领科研新范式:为科研工作带来了新的思路和方法,改变了传统的科研模式。促进技术融合与创新:大模型的发展

行业资讯
大模型语料训练
大模型语料训练是大语言模型构建和优化过程中的关键环节,以下是其具体介绍:训练前的准备数据收集:从多种来源广泛收集数据,如互联网的新闻、博客、论坛,学术文献库,书籍,以及特定行业的专业数据库等。收集。根据评估结果,对模型进行优化和调整,如调整超参数、增加或减少训练数据、改进模型架构等,以提高模型的性能和泛化能力。训练后的处理模型压缩和优化:训练好的大模型通常具有庞大的参数和较高的计算复杂度,为了编码等。数据标注:对于一些需要特定任务训练的模型,如情感分类、命名实体识别等,需要对数据进行标注。标注可以由人工完成,也可以采用半自动化的方式,利用一些预训练模型和工具进行辅助标注。标注的质量和准确性对模型的训练效果至关重要。训练过程选择训练框架和算法:根据模型的特点和需求选择合适的框架。同时,选择适合的训练算法,以优化模型的参数。将语料向量化:把清洗和标注好的文本语料转化为模型能够处理的向量形式,通常采用词嵌入技术,将单词映射到低维向量空间中。模型训练:将向量化的语料输入到选定的模型架构中,通过大量的计算和迭代,不断调整模型的参数,使模型能够学习到语料中的语言知识、语义理解和语言生成能力

行业资讯
小模型和大模型的区别
小模型和大模型的主要区别在于其规模、复杂度和性能方面。规模:模型的参数数量和大小通常比大模型要少,其层数也较浅。大模型通常需要更多的参数,更深的层数,具有更高的复杂度,以获得更好的精度和效果。复杂度:小模型的结构较简单,可以处理相对简单的任务,而大模型的结构比较复杂,可以用于大规模和复杂的数据集和任务。训练和推理时间:小模型的训练和推理时间通常较短,因为小模型的参数量少、层数浅,可以更快地完成计算。相反,大模型需要更多的计算资源和时间来训练和推理。精度和效果:大模型通常可以获得更高的精度和效果,因为它们具有更多的参数和自由度,够更准确地拟合数据。但是,小模型也可以获得很好的精度和效果,尤其在数据资源受限的情况下。可扩展性:小模型通常更易于扩展和部署,因为它们需要的计算资源和存储空间少,可以在资源有限的环境中运行。相反,大模型需要更多的计算资源和存储空间,部署时需要更多的硬件和上下文环境。小模型和大模型都有对应的应用场景。小模型适用于资源受限、对计算速度要求苛刻或用于简单的任务。大模型适用于处理大规模和复杂的任务,需要更高的精度和效果。在实际应用中,根据具体的需求和资源限制选择合适的模型。

行业资讯
大模型的应用
大模型的应用在许多领域中都发挥着重要的作用。以下是一些特定领域中大模型的应用:自然语言处理:大模型在自然语言处理领域中的应用包括机器翻译、文本生成、语音识别和语音合成等。这使得人们能够更有效地与计算机进行交互,以及更快速地获取和处理大量信息。计算机视觉:大模型在计算机视觉领域中的应用包括图像分类、目标检测、图像生成等。这使得机器能够更好地理解和解释现实世界中的视觉信息。推荐系统和广告推荐:大模型可以通过分析用户的兴趣和行为,提供更精准的商品推荐和广告投放,从而提高用户体验和广告效果。医疗保健:大模型可以帮助医生在诊断、治疗和研究方面取得更好的效果,例如通过分析医学图像来检测疾病,或者通过分析病例数据来预测疾病进展。金融服务:大模型可以帮助银行和金融机构更好地进行风险评估和欺诈检测,例如通过分析用户的金融行为来预测欺诈行为。自动驾驶和机器人技术:大模型可以帮助汽车和机器人更好地理解环境和做出智能决策,例如通过分析图像数据来识别道路上的障碍物或者通过分析用户的行为数据来预测用户的意图。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出

行业资讯
大模型训练语料
大模型训练语料是指用于训练大模型的大量文本、语音、图像等多模态数据,其规模、质量和多样性对大模型的性能和效果至关重要。以下是具体介绍:来源与构成来源广泛:包括互联网公开数据,如新闻网站、社交媒体行业的专业数据,如医疗领域的病历、医学文献,金融领域的财务报告、交易数据等,可使模型在特定领域表现更出色。特点与要求大规模:通常需要数十亿甚至更多的数据单元,以让模型学习到足够丰富的语言模式和知识,但也化能力和鲁棒性,使其能更好地适应各种不同的输入和任务需求。时效性:需要及时更新,以反映最新的语言用法、知识和社会现象,使模型能够生成符合当前实际情况的输出。作用与意义知识储备:为大模型提供丰富的词汇、语法、语义等语言知识,以及各个领域的专业知识和常识,帮助模型理解和处理输入文本。提升性能:直接影响大模型的性能和泛化能力,高质量、全面、多样的语料库能够训练出在各种任务和场景中表现出色的模型。塑造风格:不同来源和特点的语料库会使大模型具备不同的风格和能力倾向,如文学类语料库可使模型在文学创作和情感理解方面表现更好。

行业资讯
金融大模型的应用
金融大模型,也被称为金融机器学习模型或金融人工智能模型,利用大数据和机器学习技术进行金领域的预测、风险管理和决策支持等任务的模型。随着金融行业的数字化和数据爆炸式增长,金融大模型的应用越来越广泛。金融大模型的应用主要包括以下几个方面:风险管理:金融大模型可以通过分析历史数据和实时数据,对金融市场中的风险进行预测和识别。比如,通过对过去的金融危机事件进行分析,可以利用模型预测未来金融危机的可能性,帮助金融机构制定相应的风险管理策略。另外,金融大模型还可以在交易中实时监测市场风险,并及时发出风险警报。投资决策:金融大模型可以通过对历史数据和市场数据的分析,生成投资决策建议。模型可以识别出市场的组合。金融产品创新:金融大模型可以利用大量的数据进行金融产品的创新和优化。模型可以通过对市场需求和客户行为的分析,提供创新的金融产品设计。比如,利用深度学习模型和自然语言处理技术,可以对客户的文本数据进行情感分析,帮助金融机构设计出满足客户需求的个性化产品。反欺诈和合规风控:金融大模型可以通过对大量的历史交易数据进行分析,识别出潜在的欺诈行为和违规交易。模型可以建立起交易模式的基准,实时监测和识别

行业资讯
大模型平台
大模型平台是一种为开发、训练、优化和应用大规模人工智能模型而设计的综合性平台,以下是具体介绍:功能特性模型训练与优化:提供强大的计算资源和高效的训练算法,支持对大规模深度学习模型进行训练,可对模型的训练好的模型方便地部署到生产环境中,提供多种接口和工具,使开发者能够将大模型集成到各种应用程序中,如智能客服、内容生成、智能推荐等。监控与评估:在模型训练和应用过程中,对模型的性能、运行状态等进行实时监控和评估,及时发现问题并进行调整和优化,还可以对模型的预测结果进行分析和解释。主要类型通用大模型平台:具有广泛的知识和强大的语言处理能力,可应用于多种自然语言处理任务和领域,为用户提供通用的智能服务和解决方案。行业大模型平台:针对特定行业的需求和特点进行定制化开发和优化,如金融领域的大模型平台、医疗领域的大模型平台等,能够更好地满足行业内的专业需求,提供更精准和有效的智能应用。开源大模型平台:开源了大量的预训练模型和相关工具,供全球的开发者和研究人员使用和贡献,促进了大模型技术的快速发展和创新,开发者可以在此基础上进行二次开发和定制。应用场景自然语言处理领域:可用于机器翻译、文本摘要、问答
猜你喜欢

行业资讯
数据底座解决方案实践应用
星环科技数据底座方案已在多个场景落地应用:广西某水电企业工业大数据生态云平台按照“统一规划、统一设计、统一建设”原则开展适应电力能源需求的“云-雾-端”多级、多云协同云计算架构设计。形成电力能源企业计算云、存储云、网络云、安全云等多云架构体系。打造包含智慧运营中心、设备状态诊断中心、安全应急中心、气象资源中心、智慧营销中心与智慧电厂的核心智慧化平台,实现数字化业务管控、智慧化企业经营和生态化商业服务的完整生态,实现企业的数字化转型。工业大数据生态云平台实施分为平台构建、数据资产治理实施与基础门户建设三个部分。其中IaaS层提供计算资源、存储资源、网络资源等基础设施服务;PaaS层由容器云、微服务治理、DevOps、敏捷开发平台、大数据平台、数据资产管理、统一应用门户等组成,为上层智慧企业应用提供基础能力平台的支撑,未来可进一步扩展人工智能平台、元宇宙、区块链、数字孪生等新技术应用平台;SaaS层应用提供数字化业务管理、智慧化企业运营管控、生态化商业服务等应用,并基于统一应用门户为用户提供交互服务。新能源集控中心是实时数仓在新能源方面的应用,跟水电比较像,比如区域监控中心一体化大数据应用...

行业资讯
图数据库有哪些?
图数据库是一种用于处理图形数据的特殊类型的数据库。它们旨在存储和管理关系和连接,具有比其他类型的数据库更强大的能力。目前国内有众多优秀图数据库产品,星环科技图数据库产品StellarDB其中之一。TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。TranswarpStellarDB优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的...

行业资讯
边缘计算平台
在边缘计算领域,星环科技研发了边缘计算平台Sophon。Sophon是解决多模态数据集成和治理过程中的边缘化、智能化的云端-边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云-边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。Sophon在智能制造、智能安防、智能工地、智能交通、智能城市、智能校园、智能加油站等城市治理、设备可预测性维护等云边一体场景有着广泛的应用。当前边缘计算作为产业数字化转型核心技术已形成共识,我国也高度重视边缘计算的发展,积极推进边缘计算在工业互联网等多个领域的技术、标准与产业发展。星...

行业资讯
国内隐私计算平台
星环SophonP²C是企业级隐私计算平台,拥有多项性能及安全认证,平台支持不同场景的隐私计算需求,包括横纵向联邦学习、多方安全计算、基于差分隐私的数据发布、匿踪查询等,为多方数据安全协作提供完整的平台底座。SophonP²C可用于解决跨组织协作时无法安全利用各方数据的难题,助力数据流通应用的合法合规。在保障隐私的前提下,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期,提供多种开箱即用的工具,方便用户进行数据处理、分析、特征工程等工作,可快速进行多方数据统计、分析建模和应用工作。平台拥有的多种适应不同安全和通讯环境的加密安全手段和通信架构,为跨组织的数据协作提供安全、可靠、高效的平台支持。分布式隐私计算平台SophonP²C产品优势:支持多种隐私计算框架,平台易用易部署1.采用同态加密、差分隐私、秘密分享、不经意传输等隐私技术,覆盖联邦学习(FL)、多方安全计算(MPC)、匿踪查询(PIR)、隐私求交(PSI)等多种隐私计算功能。2.支持大数据规模的隐私计算场景,支持亿级数据进行联邦学习、多方安全计算和隐私求交。3.提供页面可视化安装部署,并支持实体部署、容器部署、...

行业资讯
国产时空数据库有哪些?
随着科技和信息技术的快速发展,时空数据已经成为重要的技术支撑和决策工具。与此同时,国内也出现了不少优秀的国产时空数据库产品,不仅在空间分析、时序分析等方面实现了卓越的表现,同时也在存储管理、可视化展示等方面有着出色的成果。不少时空数据库产品已实现了高可靠性、高性能和高稳定性的功能,在交通运输、城市规划、GIS和物流供应链等领域都有着广泛的应用。其中星环科技的分布式时空数据库-TranswarpSpacture就是其中一款优秀的时空数据库产品。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。产品优势原生空间:时空数据类型,针对空间时空数据的特定优化。兼容OGC标准:提供丰富的分析函数,具备复杂分析挖掘能力。支持SQL:基于SQL完成空间分析和轨迹分析,降低产品使用门槛。兼容Po...

行业资讯
数据安全出境解决方案
近年来,随着数字经济的蓬勃发展,数据跨境活动日益频繁,数据处理者的数据出境需求快速增长。为规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全、自由流动,国家互联网信息办公室公布了《数据出境安全评估办法》,9月1日起施行。《数据安全出境评估办法》构建了我国数据出境安全评估的制度,然而企业在具体落地方面,还存在诸如数据分类分级;重要数据识别、存储、管理;数据安全监督;敏感数据防泄露等实际困难,国内迫切需要落实数据安全出境的企业。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,构建明日数据世界。在数据安全与流通方面,星环科技具备一系列产品和解决方案。针对有数据跨境需求的企业,星环科技可以提供一套可落地的企业数据安全出境合规解决方案,为企业提供数据跨境一站式服务,助力企业高效、合规的开展数据流通业务。以某智能车企云端车联网全球化数据安全合规案例为例,针对客户面对的系统内存在大量个人隐私数据,但是没有资产地图;缺乏数据分类分级策略;缺乏个人隐私数据使用、流转的监测与防护;需要敏感资产风险评...

行业资讯
数字政府建设
近日,领先的IT市场研究和咨询公司IDC发布2022年数字政府百强榜,梳理出数字政府领域领先的技术供应商,评估了技术提供商的市场能力及市场份额。星环科技作为企业级大数据基础软件开发商,成功入选IDC数字政府百强榜“大数据及数据治理”模块。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。在政府领域,星环科技通过智慧政务数字底座为政府数字化转型建设提供计算、存储、算法等基础能力支撑,归集业务数据,优化业务流程,治理出有价值的数据资源,进行专题分析沉淀数据资产,服务部门之间数据共享与业务协同,服务领导决策与政策制定,服务公众、企业便捷办事。公司产品已被多个部委或省市机关部门使用,助力构建数字化政府,提升治理效率。比如星环科技基于数据云平台TDC为建设上海市数据资源平台提供了底层支撑,将70多个委办局以及16个区县业务库的结构化和非结构化数据进行归集,构建三级数据共享交换体系,保障数据安全,支撑“一网通办”等数据服务能力。此外,根据不...

行业资讯
数据库国产化替代
数据库作为提供数据存储与处理能力的基础软件,是信息系统的基础、信息安全的基石,因此,数据库自主可控和国产化替代已经刻不容缓。兼容性是国产化替代关键,自研数据库更具潜力Oracle数据库发展较早,在国内市场内占领了一定先机,企业经过信息化的长期积累和革新,基于Oracle开发了大量的系统业务。为了能够适配新的国产数据库产品,必须对应用代码进行大量修改,各数据表的数据类型、函数、语法规则需要进行系统、全面的改造,这就要求新的国产数据库对原有数据库能够有很好的兼容性支持,降低迁移的代码改造成本。Oracle经过多年的发展,在SQL语言、性能、实例形态、容灾方案等方面有很多积累扩展。若要实现Oracle数据库的国产化替代,除了要能够提供在性能、容灾能力、安全能力等方面全方位提供对等的能力,首先要解决的就是如何兼容Oracle的大量SQL方言,尤其是Oracle的PL/SQL这一独特的广受欢迎的语法体系。中国信通院《数据库发展研究报告》中表示,“国内关系型数据库产品中多数是基于MySQL和PostgreSQL二次开发的”。因此,这些产品对MySQL、PostgreSQL兼容性较好,但没有体系化的...

行业资讯
构建城轨交通数据底座
利用星环科技数据云平台TDC打造的基于PaaS平台的绿色轨道交通线网指挥中心,为轨交集团打造技术中台、数据中台、模型中台、业务中台。与传统模式相比,PaaS模式采取集约化部署,能大大提高资源利用率;可为开发人员提供隔离的租户环境,灵活选择所需大数据与AI能力,进行探索分析和数据挖掘。技术中台:统一资源管控,灵活资源分配,快速资源申请与部署。数据中台:全量数据接入;面向应用主题的指标计算与规范化数据存储。模型中台:基于人工智能、深度学习的算法模型,支撑业务分析、评估、与决策。业务中台:采用微服务架构,串联系统功能,打通整合业务应用。通过采集实时能耗、电能质量、设备状态等实时数据和客流信息、列车运营信息、基础信息等非实时数据,基于星环科技智能分析工具Sophon进行建模预测,支撑上层能耗统计与监测应用、能耗综合评估应用,实现行车调度精细化,促进轨道交通绿色低碳发展。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。通过为企业搭建数字化转型的数字底座,星环科技助力政府、金融、能源、...

企业选择合适的图数据库需要考虑多方面的因素,包括以下几点:数据集规模:如果需要处理大规模的图形数据,应选择支持水平扩展和集群部署的图数据库。查询需求:不同的图数据库对数据类型和查询需求的支持程度有所不同,应根据实际需求选择。性能和可扩展性:不同的图数据库性能和可扩展性有所不同,应选择性能和可扩展性良好的图数据库。支持程度:选择使用支持程度好的图数据库,可以得到更好的技术支持。维护和成本:选择维护成本低、方便使用的图数据库,能够降低维护成本和使用难度。在选择图数据库时,应根据具体需求进行综合分析、评估和选择。星环科技分布式图数据库是国内比较知名的图数据库产品之一。星环分布式图数据库StellarDB星环科技在图计算领域深耕多年,自主研发了分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB在数据导入、多跳查询和图算法性能方面实现了数倍升级,同时在易用...