AI大模型的场景应用

AI模型应用场景非常广泛,涵盖了多个行业和领域。以下是一些具体应用场景:金融领域风险评估与信用评级:通过对海量金融数据分析,包括客户交易记录、信用历史、收入情况等,AI模型能够更准确地投资建议和组合优化方案,帮助投资者做出更明智投资决策。金融欺诈检测:识别和防范各类金融欺诈行为,如信用卡盗刷、保险欺诈、洗钱等。通过对交易数据和用户行为实时监测和分析,AI模型能够发现异常模式和和兴趣,推荐适合学习资源,如教材、课件、视频、练习题等,丰富学生学习素材,提高学习资源利用效率。虚拟教学环境与仿真实验:创建虚拟教学环境和仿真实验场景,让学生在虚拟世界中进行实践操作和体验,提高:利用AI技术对文化遗产进行数字化保护和修复,如对古建筑、文物等进行三维重建、图像修复、病害监测等,延长文化遗产寿命,传承和弘扬优秀传统文化。政务领域智能政务服务:为政府部门提供智能政务服务,如智能评估客户风险水平和信用等级,为金融机构贷款审批、信用卡发放等业务提供决策依据,降低违约风险。投资决策辅助:分析市场行情、宏观经济数据、公司财报等信息,预测股票、债券等金融资产价格走势,为投资者提供

AI大模型的场景应用 更多内容

AI模型可以应用于许多领域,包括自然语言处理、计算机视觉、语音识别、人工智能游戏、机器译等等。以下是部分具体应用场景:自然语言处理:AI模型可以更准确地完成文本分类、情感分析、实体识别、语义数据分析,从而实现更准确和智能金融风险管理。医疗诊断:AI模型可以基于数据应用于医疗领域,帮助医生提高诊断准确性和医疗效率。智能客服:AI模型可以帮助企业实现智能客服自动化,在解决客户问题应用创新场景,推出相应工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出匹配等任务。计算机视觉:AI模型可以大幅提高计算机视领域图像识别、分割、人脸识别和目标检测精度与效率。语音识别:AI模型能够更精准地识别语音信号,提高语音识别的准确率和响应速度。人工智能游戏:AI模型有助于实现更强大AI玩家,更真实和智能游戏情境以及更高质量游戏体验。机器翻译:AI模型可以获得更高机器翻译质量,从而提高翻译效率和可靠性。金融风控:AI模型可以自动化地进行大量
随着人工智能技术不断发展,越来越多AI模型迅速发展。这些模型具有大量、层数较深和较高模型复杂度,能够通过处理海量数据进行学习和预测。那么,AI模型应用于哪些场景呢?AI模型有许多应用场景应用于欺诈检测、信用评估、风险预测等金融风控场景。医疗辅助:AI模型可用于医学影分析、疾病诊断、药物研发等医疗辅助应用。虚拟现实与增强现实:AI模型可用于虚拟现实与增强现实技术感知、交互、渲染等方面。尽管AI模型在许多领域有潜力应用但由于模型计算资源需求较高,实际落地用仍面临挑战。星环科技模型训练工具,帮助企业打造自己专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应,以下是一些常见应用:语理解与处理:AI模型可以用于自然语言处理(NLP)任务,如文本分类、命名实体识别、机器翻译、对话系统等。图像识别与处理:AI模型可以用于图像识别、物体检测、图像分割、图像生成等。语音识别与处理:AI模型可以用于语音识别、语音合成、情感分析等。推荐系统:AI模型可以用于根据用户历史行为和个人特征,进行个性化推荐,如商品推荐、内容推荐等。金融风控:AI模型
行业资讯
AI模型应用
AI模型是参数数量或规模庞大人工智能模型,通常包括深度神经网络中参数数量超过数百万模型AI模型在许多领域都有广泛应用,括自然语言处理,计算机视觉,语音识别,强化学习等。以下是AI模型智能投资等任务。星环科技模型训练工具,帮助企业打造自己专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己行业大模型。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业星环金融模型无涯,以及数据分析模型SoLar“求索”。一些应用:自然语言处理:模型可以用于机器翻译、文本生成、问答系统等任务。计算机视觉:模型可以用于图像识别、目标检测、图像生成等任务。语音识别:模型可以用于语音识别、语音合成等任务。强化学习:模型可以用于训练智能体在环境中学习优策略。医疗诊断:模型可以用于辅助医生进行疾病诊断和预测。自动驾驶:模型可以用于自动驾驶车辆中感知、决策和控制。金融预测:模型可以用于股票价格预测、风险评估和
模型目前应用场景大致可以分为两类,一类是利用模型自然语言理解能力把它作为人机交互接口,即模型+应用;第二类场景是用模型来构建现有应用大脑、决策机制,利用它需求理解、分析、推理能力来构建应用,做一个中枢或者控制器。未来,每个企业都能打造自己专属模型,而企业每个个人都可以拥有自己AI助理来帮助提升效率,模型在各行各业应用将会推动一次产业革命,从而提升整个社会生产效率。作为一家企业级数据基础软件开发商,星环科技致力于为行业提供模型应用构建一系列工具,以及在擅长领域研发领域基础模型,助力企业抓住模型时代新机遇。为了帮助企业用户基于模型构建应用,星环科技推出了模型持续提升和持续开发工具SophonLLMOps,为用户打通从数据接入和开发、提示工程、模型微调、模型上架部署到模型应用编排和业务效果对齐全链路流程,从而实现针对模型数据和分析持续提升。同时星环科技还推出了星环无涯金融模型Infinity、数据分析模型SoLar“求索”两领域模型。星环无涯融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大理解和生成能力
AI模型应用开发是一个综合性过程,涉及多个关键步骤和技术要点。1.明确应用场景和需求场景分析:深入研究目标行业和应用场景,例如医疗领域辅助诊断、金融领域风险评估、教育领域个性化学习辅助等。了解场景业务流程、用户需求和痛点,确定模型可以发挥作用具体环节。需求定义:明确应用功能需求,如文本生成、翻译、分类,还是问答系统等;性能需求,包括准确率、响应时间、吞吐量等;以及用户体验需求,如界面友好性、交互便捷性等。2.选择合适模型模型评估:根据应用需求,评估不同AI模型。考虑模型性能指标,如在相关任务中准确率、召回率等;模型规模和复杂度是否适合部署环境;模型预训练领域是否与应用场景匹配等。模型来源:可以选择开源模型,利用其公开架构和参数进行微调。也可以使用商业公司提供模型服务,或者自行训练一个新模型。3.数据准备数据收集:收集与应用场景相关数据:如果是面向用户应用,需要开发用户界面(UI)。根据应用场景和用户体验需求,设计简洁、直观界面,方便用户输入和获取信息。后端开发:搭建后端服务,处理业务逻辑和数据存储。后端需要与模型进行交互,将用
大门。一、深度剖析金融场景模型金融场景模型,是专门针对金融领域复杂业务场景打造人工智能模型。它并非普通AI模型,而是融合海量金融数据、先进算法与强大算力结晶。通过对金融市场历史数据、经济指标场景模型则能根据金融行业风险度量标准,精确计算出各种风险指标,为金融机构提供专业、可靠风险预警。二、多元应用场景,赋能金融全流程(一)智能投顾,开启个性化投资时代在投资领域,金融场景模型应用正金融场景模型:重塑金融行业新格局在数字化浪潮汹涌当下,金融行业正经历着深刻变革,而金融场景模型出现,无疑成为推动这场变革关键力量。它宛如一把神奇钥匙,开启了金融领域智能化、高效化全新建议。与通用模型相比,金融场景模型具有鲜明独特优势。它对金融专业知识理解和运用更加深入,能够准确处理金融领域特有的术语、业务逻辑和风险评估方式。在风险评估中,通用模型可能只是泛泛分析,而金融彻底改变着传统投资模式。以往,投资者往往依赖投资顾问经验和有限市场分析来做出投资决策,这种方式不仅效率低,而且难以满足不同投资者个性化需求。如今,借助金融场景模型,智能投顾平台能够根据投资者
情况和任务。模型AI通常使用深度学习框架,来构建和训练模型。这些框架提供了强大工具和库,使研究人员能够更容易地处理规模数据集,构建复杂神经网络结构,并进行高效计算。模型AI应用非常广泛应用创新场景,推出相应工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出模型AI是指使用大量数据和计算资源来训练高级人工智能(AI模型技术。随着数据大量增长和计算能力提高,AI系统性能也在不断提高。模型AI目标是提高AI系统表现,使其更加适应各种复杂。然而,模型AI培训和推理需要大量计算资源和时间。模型AI通常需要强大硬件基础设施和优化软件环境才能运行。星环科技模型训练工具,帮助企业打造自己专属模型星环科技在行业内首先提出行业大模型,帮助客户将原型语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用语言模型模型持续提升。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业星环金融模型无涯,以及数据分析模型SoLar“求索”。
随着技术发展和计算能力提高,AI模型成为了当今AI领域火热话题。AI模型具有广泛应用领域,如自然语言处理、图像识别、机器翻译等。AI模型是指参数数量超过数百万深度神经网络模型,通常需要大量计算资源和高性能硬件支持。这些模型通常由多个层次构成,每个层次包括了许多神经元,每个神经元都有一些权重,这些权重需要通过大量训练数据进行调整,以使模型能够更准确预测结果。AI模型广泛应用于自然语言处理、图像识别、语音识别和机器翻译等领域。以自然语言处理为例,AI模型可以帮助机器理解人类语言复杂语义和语法结构,从而使得机器能够更准确地理解和分析人类语言。AI模型也可以被应用在图像识别中,通过学习大量图像数据,模型可以准确地识别物体和场景,并对视觉信息进行分类和监测。为帮助企业构建自己模型,星环科技推出了机器学习模型全生命周期管理工具平台SophonLLMOps,支持从数据接入开发、提示工程、模型微调、上架部署到应用编排和业务效果对齐全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予模型“长期记忆”,打破通用模型时空限制
行业资讯
AI模型
AI(人工智能)和模型(LargeModels)之间关系是密切且相互促进模型AI领域一个重要分支,它们发展和应用正在推动AI技术进步,并在多个领域产生深远影响。同时,AI总体目标和原则也指导着模型设计和应用AI发展推动了模型兴起:随着AI技术进步,特别是深度学习发展,研究人员开始探索更大、更复杂模型,以处理更复杂任务和数据集。这些模型因为参数数量巨大而得名能力和应用范围:模型通过预训练和微调,能够处理多种任务,从语言翻译、文本摘要到图像识别和生成,极大地扩展了AI应用范围。AI技术进步使得模型训练成为可能:随着计算能力提升和算法优化,如“模型”。模型AI强力工具:模型因其庞大参数量和深度学习能力,能够捕捉和学习数据中复杂模式和关系,这使得它们在自然语言处理(NLP)、计算机视觉、语音识别等领域表现出色。模型提升了AI分布式训练、模型并行、混合精度训练等技术,使得训练具有数十亿甚至数千亿参数模型成为可能。模型AI挑战:模型需要大量数据和计算资源,这对数据隐私、能源消耗和模型解释性提出了挑战,也是AI领域
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...