预训练大模型训练技巧是什么

行业资讯
大模型预训练
大模型预训练是大模型训练过程中的关键环节。让模型学习到广泛的语言知识、语义理解能力和各种模式,以便在后续的微调或直接应用中能够更好地适应各种具体任务,如文本生成、问答、翻译等。关键步骤数据收集与预处理收集海量数据:从多种渠道收集大量的文本数据,来源涵盖互联网文章、书籍、新闻报道、学术论文、社交媒体等,以覆盖各种领域和主题,为模型提供丰富的语义信息。例如训练一个通用语言大模型,可能会收集数十亿甚至大规模数据中发现模式和规律。常见的预训练任务包括语言模型任务,即预测文本序列中的下一个单词或字符;以及掩码语言模型任务,随机掩盖输入文本中的一些单词或字符,让模型预测这些被掩盖的内容。数据源采样与平衡。同时,可根据需要扩充词表,如添加常见汉字等,以提高模型对特定语言或领域的适应性。模型选择与架构搭建选择合适的预训练模型基座:模型架构在自然语言处理任务中表现出色,具有高效的特征提取和表示能力,能够为预训练提供良好的基础。设计与优化模型结构:加入注意力机制的优化,如多查询注意力机制、快速注意力机制,以及位置嵌入策略,以加速训练并提高模型性能。预训练过程无监督学习:采用无监督学习的方式,让模型自动从
预训练大模型训练技巧是什么 更多内容

行业资讯
大模型预训练
大模型预训练是大模型训练过程中的关键环节。让模型学习到广泛的语言知识、语义理解能力和各种模式,以便在后续的微调或直接应用中能够更好地适应各种具体任务,如文本生成、问答、翻译等。关键步骤数据收集与预处理收集海量数据:从多种渠道收集大量的文本数据,来源涵盖互联网文章、书籍、新闻报道、学术论文、社交媒体等,以覆盖各种领域和主题,为模型提供丰富的语义信息。例如训练一个通用语言大模型,可能会收集数十亿甚至大规模数据中发现模式和规律。常见的预训练任务包括语言模型任务,即预测文本序列中的下一个单词或字符;以及掩码语言模型任务,随机掩盖输入文本中的一些单词或字符,让模型预测这些被掩盖的内容。数据源采样与平衡。同时,可根据需要扩充词表,如添加常见汉字等,以提高模型对特定语言或领域的适应性。模型选择与架构搭建选择合适的预训练模型基座:模型架构在自然语言处理任务中表现出色,具有高效的特征提取和表示能力,能够为预训练提供良好的基础。设计与优化模型结构:加入注意力机制的优化,如多查询注意力机制、快速注意力机制,以及位置嵌入策略,以加速训练并提高模型性能。预训练过程无监督学习:采用无监督学习的方式,让模型自动从

行业资讯
大模型预训练
大模型预训练是大模型训练过程中的关键环节。让模型学习到广泛的语言知识、语义理解能力和各种模式,以便在后续的微调或直接应用中能够更好地适应各种具体任务,如文本生成、问答、翻译等。关键步骤数据收集与预处理收集海量数据:从多种渠道收集大量的文本数据,来源涵盖互联网文章、书籍、新闻报道、学术论文、社交媒体等,以覆盖各种领域和主题,为模型提供丰富的语义信息。例如训练一个通用语言大模型,可能会收集数十亿甚至大规模数据中发现模式和规律。常见的预训练任务包括语言模型任务,即预测文本序列中的下一个单词或字符;以及掩码语言模型任务,随机掩盖输入文本中的一些单词或字符,让模型预测这些被掩盖的内容。数据源采样与平衡。同时,可根据需要扩充词表,如添加常见汉字等,以提高模型对特定语言或领域的适应性。模型选择与架构搭建选择合适的预训练模型基座:模型架构在自然语言处理任务中表现出色,具有高效的特征提取和表示能力,能够为预训练提供良好的基础。设计与优化模型结构:加入注意力机制的优化,如多查询注意力机制、快速注意力机制,以及位置嵌入策略,以加速训练并提高模型性能。预训练过程无监督学习:采用无监督学习的方式,让模型自动从

行业资讯
大模型增量预训练
大模型增量预训练是在已经预训练好的大模型基础上,利用新的数据继续进行训练的过程。其目的是让大模型能够学习到新的知识、技能或者适应新的领域和任务,同时尽量保留原有的语言理解和生成能力。数据准备收集新能需要对数据进行标注,尤其是在有监督的增量预训练场景下,准确的标注可以帮助模型更好地理解数据的语义和任务要求。训练过程调整选择合适的训练策略:一种常见的策略是微调(Fine-tuning),即固定大模型中的知识,但也有过度拟合新数据而忘记原有知识的风险。设置训练参数:学习率是关键参数之一。在增量预训练中,由于模型已经有了一定的知识基础,通常需要使用比初始预训练更小的学习率,以避免破坏原有的参数的大部分参数,只对最后几层或者与任务相关的特定参数进行更新。这样可以在学习新内容的同时,减少对原有知识的破坏。另一种策略是在整个模型上进行训练,但使用较小的学习率。这种方法可以让模型更全面地吸收新数据。验证策略:将新数据划分为训练集、验证集和测试集。在训练过程中,使用验证集来监控模型的性能,根据验证集上的表现来调整训练参数和策略。与原始模型性能进行对比,确保增量预训练后的模型在新任务上有提升的同时,没有在原有擅长的任务上出现明显的性能下降。

行业资讯
预训练大模型,预训练大模型是什么?
预训练大模型是指在大型数据集上进行训练的深度神经网络模型,其中包含大量的参数和层级。这些模型通常使用大量的计算资源和大数据集进行训练,可以提高其性能和泛化能力。预训练大模型可以通过预先在大数据集上进领域中取得了显著的成效,例如计算机视觉、自然语言处理、语音识别等。预训练大模型是一种有效的机器学习技术,它在大型数据集上进行训练,可以提高模型的性、泛化和自适应能力,可以应用在多个领域,有关领域的应用行训练,来提高模型在特定任务上的表现,并减少对于任务特征依赖。预训练大模型通常需要在海量的数据集上进行训练,以获得更好的性能。在训练预训练大模型时,通常会使用大量的计算资源和基础设施,例如GPU集群、超级计算机和云服务。与传统的机器学习方法相比,预训练大模型具有更高的学习能力和性能,因为它们可以自动地从海量数据中发现隐藏的模式和规律,并通过相应任务的调整,进行微调实现更好的表现。这种方法已经在许多提供更好的训练模型。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型

行业资讯
预训练大模型,预训练大模型是什么?
预训练大模型是指在大型数据集上进行训练的深度神经网络模型,其中包含大量的参数和层级。这些模型通常使用大量的计算资源和大数据集进行训练,可以提高其性能和泛化能力。预训练大模型可以通过预先在大数据集上进领域中取得了显著的成效,例如计算机视觉、自然语言处理、语音识别等。预训练大模型是一种有效的机器学习技术,它在大型数据集上进行训练,可以提高模型的性、泛化和自适应能力,可以应用在多个领域,有关领域的应用行训练,来提高模型在特定任务上的表现,并减少对于任务特征依赖。预训练大模型通常需要在海量的数据集上进行训练,以获得更好的性能。在训练预训练大模型时,通常会使用大量的计算资源和基础设施,例如GPU集群、超级计算机和云服务。与传统的机器学习方法相比,预训练大模型具有更高的学习能力和性能,因为它们可以自动地从海量数据中发现隐藏的模式和规律,并通过相应任务的调整,进行微调实现更好的表现。这种方法已经在许多提供更好的训练模型。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型

行业资讯
预训练大模型,预训练大模型是什么?
预训练大模型是指在大型数据集上进行训练的深度神经网络模型,其中包含大量的参数和层级。这些模型通常使用大量的计算资源和大数据集进行训练,可以提高其性能和泛化能力。预训练大模型可以通过预先在大数据集上进领域中取得了显著的成效,例如计算机视觉、自然语言处理、语音识别等。预训练大模型是一种有效的机器学习技术,它在大型数据集上进行训练,可以提高模型的性、泛化和自适应能力,可以应用在多个领域,有关领域的应用行训练,来提高模型在特定任务上的表现,并减少对于任务特征依赖。预训练大模型通常需要在海量的数据集上进行训练,以获得更好的性能。在训练预训练大模型时,通常会使用大量的计算资源和基础设施,例如GPU集群、超级计算机和云服务。与传统的机器学习方法相比,预训练大模型具有更高的学习能力和性能,因为它们可以自动地从海量数据中发现隐藏的模式和规律,并通过相应任务的调整,进行微调实现更好的表现。这种方法已经在许多提供更好的训练模型。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型

行业资讯
预训练大模型,预训练大模型是什么?
预训练大模型是指在大型数据集上进行训练的深度神经网络模型,其中包含大量的参数和层级。这些模型通常使用大量的计算资源和大数据集进行训练,可以提高其性能和泛化能力。预训练大模型可以通过预先在大数据集上进领域中取得了显著的成效,例如计算机视觉、自然语言处理、语音识别等。预训练大模型是一种有效的机器学习技术,它在大型数据集上进行训练,可以提高模型的性、泛化和自适应能力,可以应用在多个领域,有关领域的应用行训练,来提高模型在特定任务上的表现,并减少对于任务特征依赖。预训练大模型通常需要在海量的数据集上进行训练,以获得更好的性能。在训练预训练大模型时,通常会使用大量的计算资源和基础设施,例如GPU集群、超级计算机和云服务。与传统的机器学习方法相比,预训练大模型具有更高的学习能力和性能,因为它们可以自动地从海量数据中发现隐藏的模式和规律,并通过相应任务的调整,进行微调实现更好的表现。这种方法已经在许多提供更好的训练模型。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型

行业资讯
预训练大模型,预训练大模型是什么?
预训练大模型是指在大型数据集上进行训练的深度神经网络模型,其中包含大量的参数和层级。这些模型通常使用大量的计算资源和大数据集进行训练,可以提高其性能和泛化能力。预训练大模型可以通过预先在大数据集上进领域中取得了显著的成效,例如计算机视觉、自然语言处理、语音识别等。预训练大模型是一种有效的机器学习技术,它在大型数据集上进行训练,可以提高模型的性、泛化和自适应能力,可以应用在多个领域,有关领域的应用行训练,来提高模型在特定任务上的表现,并减少对于任务特征依赖。预训练大模型通常需要在海量的数据集上进行训练,以获得更好的性能。在训练预训练大模型时,通常会使用大量的计算资源和基础设施,例如GPU集群、超级计算机和云服务。与传统的机器学习方法相比,预训练大模型具有更高的学习能力和性能,因为它们可以自动地从海量数据中发现隐藏的模式和规律,并通过相应任务的调整,进行微调实现更好的表现。这种方法已经在许多提供更好的训练模型。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型

行业资讯
大模型预训练
大模型预训练是指在大量未标注的文本数据上进行的初始训练过程,旨在使模型学习到丰富的语言结构和模式。这一过程对于大模型(如LLM)很重要,能够帮助模型构建起对语言的理解基础,从而在后续的微调或特定任务中表现更佳。从零预训练一个自己的大模型:这通常涉及使用大规模文本数据集,通过自监督学习方法让模型学习到语言的内在规律。预训练的目标是使模型能够理解语义、语法以及上下文关系。大模型训练流程:包括了数据,NSP)等任务来指导模型学习。高效训练技术:为了加速大模型的预训练过程并提高其性能,研究者们开发了一系列技术,如分布式计算、混合精度训练、梯度累积等策略。大模型预训练是一个复杂且重要的步骤,它奠定了准备、模型架构设计、损失函数定义、优化算法选择等多个环节。预训练阶段会使用诸如掩码语言建模(MaskedLanguageModeling,MLM)、预测下文(NextSentencePrediction模型后续应用的基础。通过在海量数据上的无监督学习,大模型能够掌握广泛的语言知识,并为解决各种自然语言处理任务做好准备。
猜你喜欢
表10.Hyperbase在Zookeeper上的znode节点及作用说明节点分类作用/hyperbase1(zookeeper.znode.parent)Operation节点根节点,包含所有被Hyperbase创建或使用的节点/hyperbase1/hbaseid(zookeeper.znode.clusterId)Operation节点HBaseMaster用UUID标示一个集群。这个clusterId也保存在HDFS上:hdfs:/<namenode>:<port>/hyperbase1/hbase./hyperbase1/rs(zookeeper.znode.rs)Operation节点RegionServer在启动的时候,会创建一个子节点(例如:/hbase/rs/m1.host),以标示RegionServer的在线状态。HbaseMaster监控这个节点,以获取所有OnlineRegionServer,用于Assignment/Balancing。/hyperbase1/master(zookeeper.znode.master)Operatio...
产品文档
2 社区版家族介绍及资源获取
2.1关于社区版您可能想要知道的2.2怎么联系到我们?遇到问题怎么办2.3产品资源汇总
产品文档
2.3 Hyperbase 管理页面
HyperbaseWeb管理页面主要用于Hyperbase服务的各种数据和信息的查看,下面我们将介绍管理页面的一些简单操作。HMaster管理页面打开HyperbaseActiveMaster管理页面的方法有两种:根据集群的ActiveMaster的IP地址打开:http://master_node_ip:60010。如下图:图25.ActiveMasterWeb页面通过TDH管理页面中Hyperbase服务的HMaster的ServiceLink打开,详细流程如下:TranswarpDataHubWEB管理页面也要根据集群的ActiveMaster的IP地址打开,地址一般是http://master_node_ip:8180。打开对应的Hyperbase服务的Roles页面。如下图:图26.Hyperbase角色页面左上角服务名后的圆点颜色表示集群中的Hyperbase服务的状态,比如当前是绿色的Green(HEALTHY),健康状态。另两种状态是Yellow(WARNING)和Red(DOWN)。通过每个HMaster对应的ServiceLink可以打开HMaster管理页面。如下...
表9.Hyperbase在HDFS中的目录结构简介目录作用有无清理机制or如何清理/hyperbase1根目录/hyperbase1/.tmp临时目录,用于存储临时文件和写入过程中的临时数据。这些临时文件可能包括数据块的临时副本、临时索引文件或其他中间结果文件。写入过程中的临时数据:在hyperbase1中,数据的写入是通过WAL(Write-AheadLog)进行的,WAL用于记录数据变更操作。在写入过程中,hyperbase1会将数据写入到WAL中,同时也会将数据写入到对应的数据文件中。/hyperbase1/.tmp目录用于存储在写入过程中尚未完全写入数据文件的临时数据。这样做是为了确保数据写入的原子性和可靠性。hyperbase1会定期清理/hyperbase1/.tmp目录中的过期临时文件和数据,以避免该目录占用过多的磁盘空间。清理策略可以通过hyperbase1的配置进行调整和设置。/hyperbase1/archive归档目录,用于存储已归档的hyperbase1数据。表数据经过一段时间的存储后,可能会变得不再频繁访问或需要长期保存。为了节省存储空间和提高性能,hyper...
产品文档
客户服务
技术支持感谢你使用星环信息科技(上海)股份有限公司的产品和服务。如您在产品使用或服务中有任何技术问题,可以通过以下途径找到我们的技术人员给予解答。email:support@transwarp.io技术支持热线电话:4007-676-098官方网址:http://www.transwarp.cn/论坛支持:http://support.transwarp.cn/意见反馈如果你在系统安装,配置和使用中发现任何产品问题,可以通过以下方式反馈:email:support@transwarp.io感谢你的支持和反馈,我们一直在努力!
产品文档
2.1 安装 Hyperbase
通过Manager管理平台,可一键部署Hyperbase。可以在第一次安装TranswarpDataHub集群时安装,也可以向安装好的集群另外安装Hyperbase服务。详细安装步骤及配置项,请参考《TDH安装手册》。安装Hyperbase可以分为以下步骤:软硬件环境检查:检查服务器配置、操作系统、浏览器是否满足要求。安装前配置:配置系统运行过程中所需的文件目录,确保系统运行正常。确认网络配置、Java环境、NTP服务器配置、安全配置、节点访问配置。安装Manager:安装Manager并实现集群管理。安装Hyperbase:您可以通过Manager管理平台安装Hyperbase,并在安装过程中选择所需的HDFS、YARN和Zookeeper等依赖服务以完成部署。产品包上传:在【应用市场】>【产品包】页面上传Hyperbase及相关服务的产品包。服务添加:通过【集群管理】>【添加服务】添加TranswarpHyperbase服务及TranswarpBasic组件(包括HDFS、YARN、Zookeeper、KunDB等)。配置安全:选择安全认证方式,可选简单认证或Kerbe...
产品文档
1 产品介绍
QuarkGateway是连接客户端与QuarkServer服务器的一个中间件,是客户请求QuarkServer服务的总入口,它严格按照用户预定义的配置文件,根据用户的不同需求来提供负载均衡、SQL规则路由、高可用(包括超时转发和宕机转发)、Web运维、Inceptor安全(LDAP,KERBEROS)等各项功能。QuarkGateway可以在多个QuarkServer间平衡业务流量,能够有效地为客户端屏蔽掉集群细节,能将不同的SQL类型路由到不同的QuarkServer,并且解决了QuarkServer超时或宕机后无法执行任务的问题,提高了产品的可用性。QuarkGateway的主要功能包括:负载均衡在这种情景下QuarkGateway可以将特定的业务分担给多个QuarkServer,从而实现多个InceptorServer平衡业务流量的功能,完成此项功能的前提是QuarkServer的TAG属性一致。SQL规则路由QuarkGateway基于特定规则,可将不同类型的SQL路由到不同的QuarkServer。高可用性包括超时转发和宕机转发等,QuarkGateway可将超时或者宕机的...
hbaseSQL的IndexDDL支持创建和删除表的全局索引,包括:创建全局索引:CREATEGLOBALINDEX删除全局索引:DROPGLOBALINDEX但是,目前Hyperbase不支持使用SQL生成索引,您可以从HyperbaseShell中执行rebuild指令来生成索引,具体请参考《Hyperbase使用手册》。(创建索引前插入的数据没有索引,但是创建索引之后的数据有索引。)下面将具体介绍创建和删除索引的语法。创建全局索引:CREATEGLOBALINDEX语法:为Hyperbase表建全局索引CREATEGLOBALINDEX<index_name>ON<tableName>(<column1><SEGMENTLENGTHlength1>|<<(length1)>①[,<column2><SEGMENTLENGTHlength2>|<(length2)>,...]②);①column1:指根据哪个列建全局索引,可以有多个列,但不可包含首列(因该列映射为RowKey)。②...
为了方便您接下来的安装使用,社区版团队为您准备了视频教程,可以搭配手册内容一起查看:https://transwarp-ce-1253207870.cos.ap-shanghai.myqcloud.com/TDH-CE-2024-5/%E8%A7%86%E9%A2%91/%E5%BC%80%E5%8F%91%E7%89%88StellarDB%E5%AE%89%E8%A3%85%E8%A7%86%E9%A2%912024.5.mp4安装教程在安装启动StellarDB社区开发版容器之前,请务必执行dockerps确保环境当前无其他正在运行的开发版容器,如果有,请及时停止以防止后续端口冲突。请务必确保您的安装环境已经配置好了hostname以及/etc/hosts文件,否则hostname和IP地址将无法映射,最终导致安装失败。具体配置方式详见安装前系统配置改动安装流程步骤一将从官网下载下来的产品包上传至安装环境产品包名称:TDH-Stellardb-Standalone-Community-Transwarp-2024.5-X86_64-final.tar.gz步骤二执行下述命令进行解...
产品文档
附录 D: JSON 配置使用说明
JSON配置操作简介表数据VS表的扩展数据索引是Hyperbase的核心功能之一,我们在使用Hyperbase时,常常会为表建各类索引,包括全局索引、局部索引和LOB索引,利用索引中的数据提高查询效率。索引中的数据不属于表数据,但是从表数据而来,和表密不可分,所以我们将表数据和它所有索引中的数据合称为表的扩展数据,也就是说,我们做如下定义:表的扩展数据=表数据+全局索引数据+局部索引数据+LOB索引数据表的元数据VS表的扩展元数据Hyperbase表的元数据包括表名、列族名、DATA_BLOCK_ENCODING、TTL、BLOCKSIZE等等。一张Hyperbase表的各个索引也有自己的元数据,和索引数据一样,索引的元数据和表的关系也十分紧密,所以我们将表的元数据和它所有索引的元数据合称为表的扩展元数据:表的扩展元数据=表的元数据+全局索引元数据+局部索引元数据+LOB索引元数据我们有时也会将表的元数据称为基础元数据或者Base元数据。JSON配置的命令行指令为操作表的扩展数据和扩展元数据服务,Hyperbase提供了扩展的命令行指令:describeInJson、alterUseJ...