通用大模型与垂直大模型

行业资讯
垂直大模型,垂直大模型的优势和应用场景
垂直大模型是特定领域或行业中应用的大规模机器学习模型,专注于处理该领域内的特定任务或数据。例如,在医疗、生物信息学、金融等垂直行业,垂直大模型可以用于疾病预测、金融风险评估等任务。与通用大模型相比,垂直大模型更具针对性,性能上往往更为优化。垂直大模型的优势相比于通用大模型,垂直大模型在几个方面有其独特的优势:数据专注性:专注于特定领域的数据,训练过程中可以更好地捕捉领域特性和细微差异。性能优化:利用领域知识进行模型和算法的优化,提高准确性和效率。实用性强:直接应用于特定行业的具体问题,提供更高效的解决方案。法规和合规性:在受规管行业,如医疗和金融,更容易满足行业特定的法规和合规要求。垂直大模型在实际应用中,通过利用海量的行业数据和专业知识,实现了更精确、更高效的任务处理能力。垂直大模型的应用场景有哪些?垂直大模型在不同领域的应用广泛,如:医疗领域:疾病诊断:通过分析医学影像、电子病历和
通用大模型与垂直大模型 更多内容

行业资讯
垂直大模型
垂直大模型是指针对特定场景或任务进行优化设计的深度学习模型,它们专注于某一领域或行业,如语音识别、自然语言处理、图像分类等。与通用大模型相比,垂直大模型在特定领域的表现更为出色,能够更好地解决该金融风险评估、投资决策支持等场景,通过聚焦于金融行业的数据和知识,能够在专业性、准确性和效率上提供更优的解决方案。在星环科技的大模型技术体系中,垂直领域大模型与通用语言大模型相辅相成,共同构成了其在金融领域内的复杂问题星环科技在构建垂直大模型方面有着深入的研究和应用,特别是在金融行业。这类模型的优势在于它们能够利用特定领域的专业知识和数据,提供更精准、更专业的服务。例如,星环科技的垂直大模型可以应用于行业应用探索的核心技术支撑。这些垂直大模型不仅能够处理多样化数据集上的任务,还能针对金融行业的特殊需求进行优化,从而实现更高效的数据分析和决策支持。

行业资讯
垂直领域大模型
模型能够满足客户对定制化需求和工程化落地能力的追求。快速响应:由于专注于特定领域,垂直大模型能够快速响应市场变化,提供实际应用价值。资源效率:相比于通用大模型,垂直大模型通常需要较少的计算资源和时间。领域专业性:垂直领域大模型经过专门的训练,能够更好地理解和处理特定领域的知识、术语和上下文。高质量输出:由于在特定领域中进行了优化,垂直领域大模型在该领域的输出质量通常比通用大模型更高。特定任务效果更好:对于特定领域的任务,垂直领域大模型通常比通用大模型表现更好。垂直领域大模型的商业化侧重于针对特定行业或应用的深度定制,它们在特定领域积累了丰富的专业知识,能够提供更精准、更专业的解决方案。这些模型在实际应用中的价值体现在能够直接解决行业痛点,提高效率,降低错误率。垂直领域大模型是指专注于特定行业或应用领域的人工智能模型。它们在特定的上下文中表现出更高的精度和深度,通常在特定的、具有专业性质的数据集上进行训练,以适应特定业务需求。垂直领域大模型的一些关键特点:领域专精:垂直大模型针对特定行业或应用,如医疗、金融、教育等,提供更精准、专业的解决方案。数据针对性:垂直大模型的训练依赖于特定领域的专业数据,这使得模型在特定场景下的表现更为出色。定制化服务:垂直大

行业资讯
通用大模型
结构使得模型决策过程难以解释。通用大模型不仅提高了AI系统的效率和灵活性,还为解决跨领域的复杂问题提供了新的思路。星环科技无涯·问知星环科技无涯·问知(InfinityIntelligence),是一款基于星环大模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。通用大模型是一种能够适应广泛任务的深度学习模型,通过预训练阶段从大量无标注数据中学习到丰富的知识表示,然后在下游任务中进行微调以适应特定需求。这种“预训练+微调”的范式使得通用大模型能够在多个领域展现出色的表现。跨领域能力:通用大模型可以处理自然语言理解、图像识别、语音识别等多种类型的任务。高效迁移学习:由于预训练阶段积累了丰富的知识,微调过程往往只需要少量的数据和计算资源。灵活性:同一模型可以应用于不同的场景,降低了开发新任务专用模型的成本。泛化能力:虽然在多个任务上表现良好,但在某些特定场景下可能需要进一步优化。资源消耗:预训练阶段需要大量的计算资源和存储空间。解释性问题:复杂的神经网络

行业资讯
垂直领域专属模型的训练
垂直领域专属模型的训练:让AI更懂你的世界在人工智能领域,一个显著的趋势正在形成:通用大模型正在向垂直领域专属模型演进。这种转变不仅体现了AI技术的进步,更反映了市场对专业化智能服务的迫切需求。垂直领域专属模型通过在特定领域进行深度训练,能够提供更精准、更专业的服务,正在重塑各行各业的发展格局。一、垂直领域模型的崛起通用大模型在处理广泛任务时表现出色,但在面对专业领域时往往力不从心。以医疗领域为例,通用模型可能无法准确理解医学术语,难以处理复杂的病历数据。而经过专业训练的医疗领域模型,不仅能理解专业术语,还能辅助医生进行疾病诊断和治疗方案制定。垂直领域模型的训练需要特定的数据集和专业知识。在直接影响模型性能。在智能制造领域,采用迁移学习和增量学习策略,可以使模型快速适应新的生产环境和工艺要求。通过持续优化训练策略,模型能够保持较高的准确性和适应性。三、应用前景与挑战垂直领域模型正在多个行业金融领域,模型训练需要大量的历史交易数据、财务报表和市场分析报告。这些数据经过清洗和标注后,通过深度学习算法,使模型能够理解金融市场的运行规律,提供投资建议和风险评估。训练垂直领域模型面临数据获取

行业资讯
垂直行业模型
深度训练的人工智能模型。与大模型追求广泛的通用性不同,它更专注于某一领域的专业知识和业务流程,就像一位深耕某一领域多年的专家,对该领域的各种细节和特殊需求了如指掌。垂直行业模型优势垂直行业模型之所以业务流程、专业术语和应用场景,大模型虽然具备强大的通用性,但在处理这些特定领域的问题时,难以做到精准和深入。垂直行业模型则可以针对特定行业的数据进行深度挖掘和训练,从而提供更贴合行业需求的定制化服务。以医疗在人工智能的舞台上,大模型无疑是备受瞩目的主角。它就像一位知识渊博的全才,通过对海量数据的学习,拥有了强大的语言理解与生成能力,能轻松应对多种任务,从日常对话到文案创作,从问题解答到代码编写,几乎无所不能。然而,随着各行业数字化转型的深入,人们逐渐发现,大模型这位“全才”在面对一些特定行业的复杂问题时,有时也会显得力不从心。这时,垂直行业模型便应运而生。垂直行业模型,是专门针对特定行业或领域进行在当今的人工智能领域备受青睐,成为众多企业和机构竞相追捧的“香饽饽”,主要是由于其具备以下几大突出优势:计算资源需求低训练大模型往往需要投入巨额的成本,其中计算资源的消耗是一个重要方面。而垂直行业模型

行业资讯
什么是通用大模型?
什么是通用大模型?通用大模型是指能够处理多领域、多任务的大规模预训练模型。这些模型通过在丰富的数据集上进行预训练,能够学习到更广泛的知识和语言表示能力,通常具有更好的语义理解和生成能力。通用大模型的模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身设计旨在解决传统模型面临的领域依赖性、规模限制和任务特定训练需求等问题。它们可以用于多领域的文本分类、命名实体识别、句子关系识别、情感分析等任务。星环科技提供大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大业务特点的领域大语言模型”;第二,帮助客户将原型的大语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的大语言模型和大模型的持续提升。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。

行业资讯
垂直行业大模型
垂直行业大模型是专门针对特定行业或领域开发的人工智能模型,它们结合了行业知识和场景化处理能力,以实现更精准和高效的知识管理与应用。行业专注性:垂直大模型专注于特定行业或应用领域,如医疗、金融、教育等:由于专注于特定领域,垂直大模型能够快速响应市场变化,提供实际应用价值。资源效率:相比于通用大模型,垂直大模型通常需要较少的计算资源和时间。应用示例:在医疗领域,垂直大模型能够辅助医生进行疾病诊断、药物,提供更精准、专业的解决方案。数据针对性:这些模型在特定的、具有专业性质的数据集上进行训练,以适应特定业务需求。定制化服务:垂直大模型能够满足客户对定制化需求和工程化落地能力的追求。快速响应市场变化研发。在金融领域,垂直大模型可以进行风险评估、信用评分、投资策略分析。技术结合:垂直大模型不是简单微调,而是由多种技术结合特定场景数据集具备的垂直能力。

行业资讯
通用大模型
大模型是指参数量巨大的模型,是一个包含超过十亿个参数的模型。目前,有一些大模型在自然语言处理、图像识别、语音识别等领域取得了很好的效果。通用大模型(GeneralPurposeLargeModel)是一种大模型,旨在在多个任务和领域中都取得良好的效果,而不仅仅是在特定任务或领域中。通用大模型通常包含大量的知识储备,并且能够自适应不同领域和不同任务,从而能够提高语言理解、文本生成、对话生成、机器翻译等多个方面的能力。通用大模型的研究和应用,将有助于提高人工智能系统的性能,使其更加智能化、自适应和可靠。同时,通用大模型也需要巨大的计算资源和数据支持,因此需要强大的计算能力和大量的数据。除了自然语言处理领域,通用大模型还可以应用于其他领域,例如图像识别、语音识别、机器翻译、自动驾驶、智能家居等。通用大模型可以作为一个通用的基础模型,通过微调等方法,适应不同的应用场景和任务需求。然而,通用大模型也存在一些问题,例如模型复杂度高、训练成本高、数据隐私问题等。因此,在研究和应用通用大模型时,需要充分考虑这些问题,并采取相应的措施和方法来解决。星环科技大模型训练工具,帮助企业打造自己的专属大模型星

行业资讯
行业大模型9大典型场景应用
行业大模型是指针对特定行业或领域的需求,采用大规模数据训练和先进算法的深度学习模型。与通用大模型相比,行业大模型更注重对垂直细分领域的数据进行有针对性的训练和优化,以更好地理解行业的语义和规范,更有效地执行专业性更强的任务。以下是一些行业大模型的典型应用:智慧能源:在智慧能源领域,大模型可以帮助优化能源分配和消耗。例如,通过分析历史数据和实时信息,模型可以预测能源需求,优化电网负荷,减少能源浪费。智慧医疗:在医疗健康行业,大模型的应用包括疾病诊断、个性化治疗计划制定、药物研发等。通过分析患者的医疗记录、基因信息和生活习惯,AI模型能够提供更准确的诊断建议,甚至在某些情况下,能够发现人类医生可能忽略的细微症状。智慧城市:智慧城市利用大模型来提高城市管理效率和居民生活质量。例如,通过分析交通流量数据,模型可以优化交通信号灯控制,减少拥堵。在环境监测方面,AI可以帮助监测空气质量,预测并应对污染事件。此外,智慧安防系统也能通过大模型实现更高效的监控和应急响应。城市治理:城市治理中,大模型可以协助政策制定者分析城市发展趋势,预测社会问题,如犯罪率、失业情况等。通过这些分析,政府能够制定更有
猜你喜欢

星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...

行业资讯
数据要素安全流通服务
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...

行业资讯
基于数据安全网关的跨境安全流通方案
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...

行业资讯
什么是时空数据库?
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
图数据库有哪些特点?
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...

行业资讯
国产化替代升级实践
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...

行业资讯
银行图数据库应用场景有哪些?
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...

行业资讯
常见的图数据库应用场景有哪些?
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...

行业资讯
金融、医疗知识图谱平台
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...

行业资讯
分布式隐私计算平台
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...