基础大模型区别
基础大模型区别 更多内容

行业资讯
小模型和大模型的区别
小模型和大模型的主要区别在于其规模、复杂度和性能方面。规模:模型的参数数量和大小通常比大模型要少,其层数也较浅。大模型通常需要更多的参数,更深的层数,具有更高的复杂度,以获得更好的精度和效果。复杂度:小模型的结构较简单,可以处理相对简单的任务,而大模型的结构比较复杂,可以用于大规模和复杂的数据集和任务。训练和推理时间:小模型的训练和推理时间通常较短,因为小模型的参数量少、层数浅,可以更快地完成计算。相反,大模型需要更多的计算资源和时间来训练和推理。精度和效果:大模型通常可以获得更高的精度和效果,因为它们具有更多的参数和自由度,够更准确地拟合数据。但是,小模型也可以获得很好的精度和效果,尤其在数据资源受限的情况下。可扩展性:小模型通常更易于扩展和部署,因为它们需要的计算资源和存储空间少,可以在资源有限的环境中运行。相反,大模型需要更多的计算资源和存储空间,部署时需要更多的硬件和上下文环境。小模型和大模型都有对应的应用场景。小模型适用于资源受限、对计算速度要求苛刻或用于简单的任务。大模型适用于处理大规模和复杂的任务,需要更高的精度和效果。在实际应用中,根据具体的需求和资源限制选择合适的模型。

大模型与以往的人工智能模型有很大的区别。以前的模型大都是弱人工智能,像阿尔法狗只能下围棋,而各种识别产品也只能完成一个任务。这些模型之间是隔离的不能互相支撑。而大模型则通过扩大模型的参数规模,并通过大量数据的训练,来支撑所有人工智能的任务。与以往的单一任务模型相比,大模型可以被看作是一座通用基础模型,它可以支撑多种任务。使用大模型,可以大大降低开发人工智能产品的门槛,不再需要为每个任务开发不同的创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出模型,只需要一个基座模型就可以支撑非常多的服务。因此,大模型是新一代人工智能的代表,展现出了非常广阔的前景。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二,帮助客户

行业资讯
大模型微调
大模型微调是指在预训练好的大模型基础上,使用特定领域的数据进行进一步训练,以适应特定任务或场景的过程。这种微调可以优化模型在特定任务上的表现,使其更加精准和专业。微调的作用在于调整模型的参数,使其。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。更好地理解并处理特定领域的知识和语言模式。指令微调与使用特定领域数据进行的微调有联系也有区别。指令微调更多关注于调整模型对特定指令的理解和执行能力,而领域数据微调则侧重于让模型适应某一领域的语言风格和专业术语。两者都可以看作是大模型个性化和专业化的过程。在星环科技的大模型中,如果用户希望在金融分析领域使用该模型,可以通过提供金融相关的文本数据进行微调,使模型更好地理解和生成金融相关的报告或分析。星环大语言模型运营平台-SophonLLMOps为了帮助企业用户基于大模型构建未来应用,,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和选代

行业资讯
大模型底座
大模型底座是支撑大模型训练和应用的基础设施和技术框架,是构建大模型的基础支撑部分。AI大底座作为大模型时代的基础设施,不仅提供从数据管理到模型部署的全方位服务,还在各个行业中展现出广泛的应用潜力。作用与意义提供基础架构支持:大模型底座为整个大模型的构建提供了底层的技术框架和基础设施,包括硬件架构、软件架构、通信机制等,确保模型能够高效地运行和处理大规模的数据。承载和预处理数据:负责数据的收集调度和管理,提高资源的利用率和任务的并行处理能力,确保模型训练能够在高效、稳定的算力环境下进行。算法层:基础模型架构:设计和选择适合大模型的基础架构,为模型的学习和表示能力提供保障。训练与优化算法:采用模型的训练过程,提高训练效率,同时通过各种优化手段,如调整参数、改进架构等,不断提升模型的性能和表现。实现模型的通用性和扩展性:一个好的大模型底座能够使模型具备较强的通用性,适用于多种不同的应用场景和和共享。算力层:硬件设备:包括高性能的、计算芯片,以及大规模的存储设备和高速网络设备,为模型训练和推理提供强大的计算能力和数据传输能力。算力调度与管理:通过分布式计算、云计算等技术,实现对计算资源的灵活

行业资讯
大模型 知识图谱
大模型和知识图谱都是人工智能领域的重要工具,但它们在功能和使用方式上有明显的区别。大模型指的是具有大规模参数的深度学习模型,例如近流行的语言模型。大模型使用大量的训练数据和计算资源进行训练,可以生成自然语言文本。星环科技大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用高质量的自然语言文本,具备理解、生成和推理能力。大模型在自然语言处理、机器翻译、对话系统等任务上取得了显著的成绩,被广泛应用于各种应用领域。知识图谱则是一种结构化的知识表示方式,它通过将实体、关系和智能应用。在实际应用中,大模型和知识图谱可以相互结合,发挥各自的优势。例如,知识图谱可以提供结构化的知识表示和推理能力,有助于机器理解和推理知识;而大模型则可以通过学习大规模数据的统计规律,生成高质量的。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯

行业资讯
大模型与人工智能区别
、神经网络、统计学习、自然语言处理、机器人学等多个子领域。目标是实现机器模拟和执行人类智能行为,如理解语言、学习、推理和规划。大模型与人工智能的区别简而言之,大模型是人工智能(AI)中深度学习的一部分,专注于复杂任务的高级模型。人工智能(AI)是涵盖更广的领域,包含各种实现智能行为的方法和技术。大模型和人工智能(AI)虽然相关,但有不同的概念和作用。什么是大模型?大模型通常指的是具有庞大参数和复杂结构的机器学习模型,特别是在深度学习中。通过海量数据训练,能够处理复杂任务,如语言生成、图像识别等。什么是人工智能(AI)?人工智能(AI)广义上指的是使机器表现出智能行为的技术和理论,包括但不限于机器学习、大数据分析和专家系统。人工智能(AI)涵盖的范围较大,除了大模型,还包括算法设计

行业资讯
训练模型推理模型
训练模型与推理模型:人工智能的两大核心环节在人工智能领域,训练模型和推理模型构成了机器学习系统的两大核心环节。这两个过程虽然紧密相关,但在目的、方法和应用场景上有着本质区别。理解它们的差异与联系在不忘记旧知识的前提下学习新信息。这些进步正在改变传统的人工智能开发范式。理解训练模型和推理模型的区别与联系,不仅有助于我们把握人工智能系统的工作原理,也能为实际应用中的技术选型和优化提供基础框架。从数据准备到模型部署,这两个环节共同构成了机器学习项目生命周期的核心支柱。遍历训练数据,通过优化算法(如梯度下降)不断调整模型参数,逐步减少预测结果与真实值之间的差异。训练过程通常需要强大的计算资源,尤其是处理大规模数据集时。现代深度学习模型可能包含数百万甚至数十亿个参数,对于掌握人工智能技术的基本原理至关重要。训练模型:从数据中学习规律训练模型是指利用大量数据来调整模型内部参数,使其能够捕捉数据中潜在规律的过程。这个过程类似于人类通过学习积累经验。在训练阶段,算法会反复,需要在高性能GPU或TPU集群上运行数小时乃至数天才能完成训练。训练质量直接取决于三个关键因素:数据质量(充足且具有代表性)、模型架构(适合任务类型)和训练策略(如学习率设置、正则化方法等)。值得注意

行业资讯
大模型的基础知识
。算法基础深度学习基础是学习大模型之前必要的知识。这包括对深度学习的基本概念的理解,如神经网络的原理、激活函数和损失函数。数据处理与分析数据处理和分析是构建有效的大模型的关键组成部分。这涉及收集和准备用大模型是人工智能领域的一种机器学习模型,它们通过学习大量的数据,获得了类似于人类理解语言、图像和声音的能力。随着技术的发展,大模型正在不断推动技术进步和应用创新。概念理解大模型是一种深度学习模型,具有数十亿甚至数千亿个参数。这些参数是通过在大量数据上进行训练来学习的。大模型可以同时学习多种不同的任务,比如翻译语言、写文章、回答问题等。此外,它们需要大量的数据来训练,并且需要强大的计算资源来运行于训练的数据集,并使用工具和技术进行特征工程和预处理。此外,在构建大型语言建模时进行有效的微调也很重要。模型构建与训练构建大型语言建模涉及使用大型语言建模架构创建自定义解决方案,并对其进行微调以适应

行业资讯
企业如何选择适合的大模型?
不如定制型。而定制型大模型可根据具体需求进行优化,但需要大量的时间和资源进行开发。因此,企业在选择时要综合考虑使用场景、资源投入等因素。考虑大模型的基础和领域能力:大模型的基础能力包括语言理解、图像识别支持、开发者文档、模型更新周期等方面。企业在选择大模型时需要考虑这些因素,以便在使用时能够得到充分的支持和帮助。对于企业来说,选择适合的大模型要综合考虑大模型的类型、基础和领域能力、提示工程、微调以及大大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。除此之外,星环科技随着人工智能的不断发展,大模型的应用逐渐渗透到各个行业。那么,如何选择适合企业的大模型?考虑大模的类型:目前,大模型主要分为两类:通用型和定制型。通用型大模型适用于各种应用场景,但在性能上可能等方面,领域能力则是指在某个特定领域内的表现。企业在选择大模型时需要根据自身需求考虑这两方面的能力,以确保大模型能够符合自身的业务需求。提示工程和微调:提示工程是指为大模型提供足够的数据量进行训练,确保其
猜你喜欢

行业资讯
什么是时空数据库?
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
基于数据安全网关的跨境安全流通方案
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...

行业资讯
分布式隐私计算平台
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...

星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...

行业资讯
图数据库有哪些特点?
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...

行业资讯
银行图数据库应用场景有哪些?
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...

行业资讯
国产化替代升级实践
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...

行业资讯
金融、医疗知识图谱平台
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...

行业资讯
常见的图数据库应用场景有哪些?
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...

行业资讯
数据要素安全流通服务
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...