什么AI大模型

模型AI是指使用大量数据和计算资源来训练高级人工智能(AI模型的技术。随着数据的大量增长和计算能力的提高,AI系统的性能也在不断提高。模型AI的目标是提高AI系统的表现,使其更加适应各种复杂的情况和任务。模型AI通常使用深度学习框架,来构建和训练模型。这些框架提供了强大的工具和库,使研究人员能够更容易地处理规模数据集,构建复杂的神经网络结构,并进行高效的计算。模型AI的应用非常广泛。然而,模型AI的培训和推理需要大量的计算资源和时间。模型AI通常需要强大的硬件基础设施和优化的软件环境才能运行。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用语言模型”训练/微调,得到“满足自身业务特点的领域语言模型”;第二

什么AI大模型 更多内容

模型AI是指使用大量数据和计算资源来训练高级人工智能(AI模型的技术。随着数据的大量增长和计算能力的提高,AI系统的性能也在不断提高。模型AI的目标是提高AI系统的表现,使其更加适应各种复杂的情况和任务。模型AI通常使用深度学习框架,来构建和训练模型。这些框架提供了强大的工具和库,使研究人员能够更容易地处理规模数据集,构建复杂的神经网络结构,并进行高效的计算。模型AI的应用非常广泛。然而,模型AI的培训和推理需要大量的计算资源和时间。模型AI通常需要强大的硬件基础设施和优化的软件环境才能运行。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用语言模型”训练/微调,得到“满足自身业务特点的领域语言模型”;第二
模型AI是指使用大量数据和计算资源来训练高级人工智能(AI模型的技术。随着数据的大量增长和计算能力的提高,AI系统的性能也在不断提高。模型AI的目标是提高AI系统的表现,使其更加适应各种复杂的情况和任务。模型AI通常使用深度学习框架,来构建和训练模型。这些框架提供了强大的工具和库,使研究人员能够更容易地处理规模数据集,构建复杂的神经网络结构,并进行高效的计算。模型AI的应用非常广泛。然而,模型AI的培训和推理需要大量的计算资源和时间。模型AI通常需要强大的硬件基础设施和优化的软件环境才能运行。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用语言模型”训练/微调,得到“满足自身业务特点的领域语言模型”;第二
随着技术的发展和计算能力的提高,AI模型成为了当今AI领域的火热话题。AI模型具有广泛的应用领域,如自然语言处理、图像识别、机器翻译等。AI模型是指参数数量超过数百万的深度神经网络模型,通常需要大量的计算资源和高性能硬件支持。这些模型通常由多个层次构成,每个层次包括了许多神经元,每个神经元都有一些权重,这些权重需要通过大量的训练数据进行调整,以使模型能够更准确的预测结果。AI模型广泛应用于自然语言处理、图像识别、语音识别和机器翻译等领域。以自然语言处理为例,AI模型可以帮助机器理解人类语言的复杂语义和语法结构,从而使得机器能够更准确地理解和分析人类语言。AI模型也可以被应用在,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融模型Infinity、数据分析模型SoLar“求索”,促进金融分析和图像识别中,通过学习大量的图像数据,模型可以准确地识别物体和场景,并对视觉信息进行分类和监测。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从
AI模型是用大量数据和强大的计算机处理能力训练出来的一种深度学习模型AI模型是在统机器学习和深度学习模型的基础上进一步发展而来的。传统的机器学习模型和深度学习模型都有其自身的局限性,无法解决某些高难度的问题。而AI模型则通过增加模型的复杂度和训练数据量来解决这些问题,并且已经在许多领域中取得了重大的突破。AI模型的应用非常广泛,包括语音识别、图像识别、自然语言处理、推荐系统等方向。比如在语音识别方面,AI模型可以将口语转换为文本格式,大幅提高了智能语音助手的确率和可靠性。在图像识别方面,AI模型可以快速地识别出照片中的物体,并且可以更加准确地进行人脸识别。AI模型通过运用大量的数据和计算能力,可以在很多任务上取得比其他机器学习模型更好的效果。随着技术的不断进步和数据的增加,AI模型将在未来的智能化发展中发挥越来越重要的作用。为帮助企业构建自己的模型,星环科技推出了机器StellarDB,能够赋予模型“长期记忆”,打破通用模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融模型
AI模型是用大量数据和强大的计算机处理能力训练出来的一种深度学习模型AI模型是在统机器学习和深度学习模型的基础上进一步发展而来的。传统的机器学习模型和深度学习模型都有其自身的局限性,无法解决某些高难度的问题。而AI模型则通过增加模型的复杂度和训练数据量来解决这些问题,并且已经在许多领域中取得了重大的突破。AI模型的应用非常广泛,包括语音识别、图像识别、自然语言处理、推荐系统等方向。比如在语音识别方面,AI模型可以将口语转换为文本格式,大幅提高了智能语音助手的确率和可靠性。在图像识别方面,AI模型可以快速地识别出照片中的物体,并且可以更加准确地进行人脸识别。AI模型通过运用大量的数据和计算能力,可以在很多任务上取得比其他机器学习模型更好的效果。随着技术的不断进步和数据的增加,AI模型将在未来的智能化发展中发挥越来越重要的作用。为帮助企业构建自己的模型,星环科技推出了机器StellarDB,能够赋予模型“长期记忆”,打破通用模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融模型
AI模型是用大量数据和强大的计算机处理能力训练出来的一种深度学习模型AI模型是在统机器学习和深度学习模型的基础上进一步发展而来的。传统的机器学习模型和深度学习模型都有其自身的局限性,无法解决某些高难度的问题。而AI模型则通过增加模型的复杂度和训练数据量来解决这些问题,并且已经在许多领域中取得了重大的突破。AI模型的应用非常广泛,包括语音识别、图像识别、自然语言处理、推荐系统等方向。比如在语音识别方面,AI模型可以将口语转换为文本格式,大幅提高了智能语音助手的确率和可靠性。在图像识别方面,AI模型可以快速地识别出照片中的物体,并且可以更加准确地进行人脸识别。AI模型通过运用大量的数据和计算能力,可以在很多任务上取得比其他机器学习模型更好的效果。随着技术的不断进步和数据的增加,AI模型将在未来的智能化发展中发挥越来越重要的作用。为帮助企业构建自己的模型,星环科技推出了机器StellarDB,能够赋予模型“长期记忆”,打破通用模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融模型
随着技术的发展和计算能力的提高,AI模型成为了当今AI领域的火热话题。AI模型具有广泛的应用领域,如自然语言处理、图像识别、机器翻译等。AI模型是指参数数量超过数百万的深度神经网络模型,通常需要大量的计算资源和高性能硬件支持。这些模型通常由多个层次构成,每个层次包括了许多神经元,每个神经元都有一些权重,这些权重需要通过大量的训练数据进行调整,以使模型能够更准确的预测结果。AI模型广泛应用于自然语言处理、图像识别、语音识别和机器翻译等领域。以自然语言处理为例,AI模型可以帮助机器理解人类语言的复杂语义和语法结构,从而使得机器能够更准确地理解和分析人类语言。AI模型也可以被应用在,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融模型Infinity、数据分析模型SoLar“求索”,促进金融分析和图像识别中,通过学习大量的图像数据,模型可以准确地识别物体和场景,并对视觉信息进行分类和监测。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从
AI模型是用大量数据和强大的计算机处理能力训练出来的一种深度学习模型AI模型是在统机器学习和深度学习模型的基础上进一步发展而来的。传统的机器学习模型和深度学习模型都有其自身的局限性,无法解决某些高难度的问题。而AI模型则通过增加模型的复杂度和训练数据量来解决这些问题,并且已经在许多领域中取得了重大的突破。AI模型的应用非常广泛,包括语音识别、图像识别、自然语言处理、推荐系统等方向。比如在语音识别方面,AI模型可以将口语转换为文本格式,大幅提高了智能语音助手的确率和可靠性。在图像识别方面,AI模型可以快速地识别出照片中的物体,并且可以更加准确地进行人脸识别。AI模型通过运用大量的数据和计算能力,可以在很多任务上取得比其他机器学习模型更好的效果。随着技术的不断进步和数据的增加,AI模型将在未来的智能化发展中发挥越来越重要的作用。为帮助企业构建自己的模型,星环科技推出了机器StellarDB,能够赋予模型“长期记忆”,打破通用模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融模型
AI模型是用大量数据和强大的计算机处理能力训练出来的一种深度学习模型AI模型是在统机器学习和深度学习模型的基础上进一步发展而来的。传统的机器学习模型和深度学习模型都有其自身的局限性,无法解决某些高难度的问题。而AI模型则通过增加模型的复杂度和训练数据量来解决这些问题,并且已经在许多领域中取得了重大的突破。AI模型的应用非常广泛,包括语音识别、图像识别、自然语言处理、推荐系统等方向。比如在语音识别方面,AI模型可以将口语转换为文本格式,大幅提高了智能语音助手的确率和可靠性。在图像识别方面,AI模型可以快速地识别出照片中的物体,并且可以更加准确地进行人脸识别。AI模型通过运用大量的数据和计算能力,可以在很多任务上取得比其他机器学习模型更好的效果。随着技术的不断进步和数据的增加,AI模型将在未来的智能化发展中发挥越来越重要的作用。为帮助企业构建自己的模型,星环科技推出了机器StellarDB,能够赋予模型“长期记忆”,打破通用模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融模型
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。