大模型智能处理文档

行业资讯
模型知识库
质量。技术应用:模型知识库结合了人工智能技术,如自然语言处理(NLP)、检索增强生成(RAG)等,能够理解和生成高质量的文本内容,适应企业特定业务场景。数据来源:知识库的数据来源多样,包括企业内部文档模型知识库是基于语言模型智能系统,用于整合企业内部的各类信息资源,如文档、数据、专业知识等,形成结构化的知识体系。这些知识库能够支持智能问答、文档检索、决策支持等功能,帮助企业提高效率和决策、在线资料、行业报告等,通过文本拆分、向量化等处理方式转化为模型可理解的形式。功能作用:除了提供快速准确的查询服务外,还能用于培训、客户服务、内部协作等多个方面,提升员工工作效率和客户满意度。企业实践:不同企业根据自身需求构建知识库,例如制造业企业通过收集高频问题和答案进行训练,以优化生产流程;金融企业则可能利用知识库提升风险管理和客户服务。平台支持:市场上有多种工具和服务平台支持模型知识库的搭建和管理。

大模型智能处理文档 更多内容

行业资讯
文档数据库
存储单元,文档可以是任何结构化或非结构化的数据,使得它更加适合储存和处理非结构化数据。文档数据库还可以支持更复杂的数据模型,如嵌套文档和数组等结构。高可伸缩性和分布式:文档数据库支持水平扩展。它能够在分布式什么是文档数据库?文档数据库是一种以文档数据作为基本存储和处理单元的数据库,主要应用于存储结构各异的文档文档数据库是一种NoSQL数据库,使用文档作为基本存储单元,而不是关系型数据库中的行和列。文档数据库可以存储原始文档,如JSON等格式的文档文档数据库还支持高级查询,以便基于文档内容进行搜索和过滤。文档数据库的特点和优势数据模型灵活性高:与关系数据库相比,文档数据库使用文档作为核心环境中轻松地添加新的节点,以便处理更多的数据和查询请求,并在发生故障时有效地维护高可用性。高性能和可扩展性:文档数据库可以处理高速增长的数据量和用户数,并且能够提供出色的性能和吞吐量。这是由于文档数据库一个非常有前途的数据库类型,尤其在处理非结构化数据方面表现上佳。能够支持丰富的数据模型、高性能和可伸缩性,并对开发人员友好。广泛应用于许多行业和场景中,可以帮助企业更轻松地处理数据和提供更好的用户体验。
行业资讯
政务模型
政务模型是指一种专门应用于政务领域的综合模型,以人工智能技术为核心,结合大数据处理、机器学习、自然语言处理等多种技术手段,对来源于政务系统内部的海量、复杂数据进行分析和挖掘,以提供针对性的智能决策支持和解决方案。以下是对政务模型的详细解析:政务模型通过海量数据训练,具备了类似人类的归纳和思考能力。这些模型在计算机视觉、自然语言处理等复杂任务中展现出色性能,为政府管理、社会治理、公共服务等多个领域带来了革命性变革。政务模型的应用能够提升政府机构的信息服务效率和服务质量,缩短政策落地时间和决策周期,让业务办理更加智能化。政务模型的选择建议在选择政务模型时,应考虑以下因素:业务需求匹配:确定模型需要支持的具体业务场景和功能,选择与这些需求最匹配的模型。性能和准确性:评估模型的性能指标,如准确性、响应时间、处理能力等,确保模型能够提供高质量的服务。数据兼容性:考虑模型是否能够处理和兼容现有的数据格式和数据源。成本效益分析:评估模型的总体拥有成本(包括采购、部署、维护和运营成本),并与预期效益进行比较。技术支持和服务质量:考虑提供商的技术支持能力、服务质量和客户服务记录。合规性
链路风控提供支持。模型可以实时监测市场动态和交易数据,及时发现潜在的风险点,并依据法规进行合规性审查,帮助券商有效防范风险。智能化报告生成与文档处理智能文档平台实现文档自动生成与质检,节省人工时间并报告撰写周期。证券行业大模型的优势提升效率:无论是投研过程中的数据处理、分析,还是文档撰写、客户服务等环节,模型都能快速完成任务,减少人工操作时间。预计在客户服务、业务运营、系统运维等方面,模型的和风险策略,提供优质的投资组合配置。国金证券研究所金融工程团队率先在证券行业提出模型的产业链智能挖掘,通过大模型自动生成产业链图谱,挖掘最新舆情中的标的、产业链板块及关联度。交互式辅助应用:包括ai办公助手、ai编程助手、数字人智能交互和ai绘画等。客户服务与营销:一些券商利用模型开发智能客服和财务助手,提升客户黏性与服务质量。智能风控与合规管理:风控助手集成舆情监测、法规问答和风险分析,为全应用可提升20%的工作效率。增强决策准确性:基于海量数据和强大的算法,模型能够提供更全面、准确的市场分析和预测,为投资决策提供有力支持,降低投资风险。改善客户体验:智能客服、智能投顾等应用,能够根据客户需求提供个性化的服务和投资建议,提升客户满意度和忠诚度。
模型赋能智能运维模型智能运维中的应用,为运维领域带来了显著的自动化和智能化提升。模型成为智能运维的指挥大脑,与其他智能体协同工作,提高运维效率和自动化水平,为企业带来巨大的经济效益。具体应用机器人将模型作为“大脑”,结合可观测工具作为“感官”,感知环境并做出相应决策。基于模型智能运维实践智能运维体系通过利用模型进行智能运维,提高运维效率和准确性。具体实施包括以下几个方面:数据采集与,提高运维决策的科学性和高效性。例如,通过大模型分析海量运维数据,智能识别潜在问题。模型性能调优模型训练性能调优需要同时考虑多维混合并行策略配置与内存限制。具体步骤包括:分析profiling数据高效。修改页面字段内容和配置:开发者可以描述事件,模型生成平台规则要求的配置或代码。后台代码或SQL生成:用户在前端页面选择数据源,输入文本描述,模型返回SQL语句。需求文档生成应用:开发者输入完整的需求,模型拆解任务,生成开发任务步骤和流程,自动生成代码函数片段,并进行代码审查。模型在运维领域的应用模型在运维领域的具体应用包括:智能日志分析:模型自动解析海量日志,识别异常模式,生成易于理解的
、法律法规、财经等多种知识源的企业级垂直领域问答产品。个人知识库:支持用户一键上传文档、表格、图片、音视频等多模数据,基于星环自研的模型底座可自动对知识进行处理与入库,快速实现海量多模知识的检索与智能人工智能模型是近年来在人工智能领域发展起来的一种技术,基于深度学习,通过训练海量数据和复杂的神经网络结构来模拟人类智能。人工智能模型具有庞大的参数规模,通常包含数亿到数千亿个参数,能够处理各种任务,如自然语言处理、图像识别等。星环科技无涯·问知InfinityInteligence星环科技无涯·问知InfinityInteligence,是一款基于星环模型底座,结合个人知识库、企业知识库建议。财经:无涯·问知内置了丰富的上市公司财报和产业链图谱数据,能够为金融机构提供全面深入的投资研究分析工具。此外,星环自研模型底座的自动化知识工程特性,使其在处理和分析数据方面具有显著的优势,允许用户上传文档、表格、图片等多源数据,并支持与外部数据源的对接,使用户能够构建属于自己的专属领域模型。这一创新功能极大地扩展了模型的应用范围和深度,用户可基于自身私域知识库进行更为个性化和深入的数据
行业资讯
模型智能
模型智能体(AIAgent)是一种基于大型语言模型(LLM)构建的智能实体,具备环境感知能力、自主理解、决策制定及执行行动的能力。智能体能够模拟独立思考过程,灵活调用各类工具,逐步达成预设目标。在体可以看作是扩展了对象概念的更复杂、更智能的实体,不仅能够像对象那样响应外部请求,还能够主动探索和应对环境中的挑战。智能体与模型的关系模型智能体的核心组件,智能体是模型的未来方向。智能体将是模型在各领域应用的主体形式,模型的开发应用将围绕智能体,并以智能工具或助手的形式出现。智能体需要给定一个明确目标,就能够自动完成任务,而模型与用户的交互是基于提示词实现的,且提示词是否清晰明确直接影响回答的效果。技术架构上,智能体从面向过程的架构转变为面向目标的架构,旨在通过感知、思考与行动的紧密结合,完成复杂任务。智能体的设计通常涉及感知、推理和行动的循环过程,而对象则更多用于封装数据和实现特定的功能。智能
模型智能客服是一种基于大型机器学习模型构建的客户服务系统,它利用深度学习、自然语言处理等先进技术,实现了对海量数据的高效处理与精准分析,从而能够在实时交互中准确理解用户需求,提供个性化的服务响应。强大的语言理解能力:模型智能客服能够深度理解客户提出的问题和需求,准确把握语境,从而提供精准的解决方案。自然流畅的对话交流:这类系统具有自然的语言生成能力,能够进行流畅、连贯的对话交流,给客户带来更加真实和舒适的体验。个性化服务能力:模型智能客服可以根据客户的历史记录和偏好,提供个性化的服务和推荐,增强客户的满意度和忠诚度。智能学习与优化:模型智能客服能够不断学习和优化自身的算法和模型,提高服务质量和效率,适应不断变化的客户需求和市场环境。自动化客户服务:模型智能客服能够实现自动化的客户服务,24小时不间断地提供服务,大幅度提高响应速度和服务效率,同时降低企业的人力成本。多模态交互:模型智能客服不仅能理解文本,还能处理语音、图像等多种形式的信息,提供更加丰富和直观的多模态输出内容。情感智能:系统将具备更强的情感理解和表达能力,可以与用户进行富有同理心的交互。知识增强:知识图谱等
人工智能模型是指在机器学习和人工智能领域中,具有规模参数和复杂计算结构的模型。这些模型基于深度神经网络构建,参数量通常达到数十亿甚至数千亿个。它们能够处理规模数据,执行复杂的任务,如自然语言处理、计算机视觉和语音识别等。模型的发展历程显示了其在处理复杂问题上的优势。随着数据量的增加和模型复杂度的提高,传统的机器学习方法逐渐显得力不从心。而模型凭借其强大的计算能力和智能决策能力,在各个领域取得了显著成果。以星环科技的无涯为例,这是一个拥有数十亿参数的规模语言模型。通过在海量文本数据上进行无监督学习,无涯能够理解和生成人类语言,实现多种自然语言处理任务,包括但不限于文本生成、问答和翻译。星环科技无涯·问知InfinityIntelligence,是一款基于星环模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。
人工智能模型是目前人工智能领域的一个重要研究领域。模型是指由数百亿甚至数万亿个参数组成的神经网络模型,这些模型能够通过海量数据进行训练,从而拥有强大的数据处理能力和精确的预测能力。在许多领域,如自然语言处理、计算机视觉和自动驾驶等,模型已经成为解决各种问题的“法宝”。人工智能模型的研究与发展伴随着计算硬件的快速进步。在过去的几十年中,计算硬件的性能不断提高,从而为模型的训练和应用提供了强大的支持。特别是在近年来,由于深度学习技术的不断发展和计算硬件的进一步升级,模型的规模和性能有了进一步的提升。人工智能模型是目前人工智能领域的一个重要研究方向,其已经在各个领域展现出强大的应用软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台潜力。未来,随着计算硬件的进一步升级和技术的不断创新,模型的应用前景将更加广阔。模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发模型。星环科技作为国内领先的数据基础
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...