大模型怎么提问

星环无涯·问知
星环科技无涯·问知Infinity Intelligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。

大模型怎么提问 更多内容

模型智能问答:开启智能交互新时代模型智能问答的崛起在人工智能飞速发展的当下,模型智能问答异军突起,已然成为该领域的焦点。它的出现,堪称人机交互领域的一次重大变革。过去,人们与机器的交互往往局限于特定指令和简单程序,而模型智能问答凭借其强大的自然语言处理能力,打破了这一局限,开启了人机交流的全新模式,让人们能够以更加自然、流畅的方式与机器对话。模型智能问答的崛起并非偶然,而是技术长期演进的必然结果。从早期简单的基于规则的问答系统,到后来基于检索和匹配的方法,再到如今融合深度学习与规模数据训练的模型,每一次技术的突破都为智能问答的发展注入了新的活力。探秘模型智能问答原理模型技术剖析模型,通常指基于深度学习的规模神经网络模型,其参数规模可达数十亿甚至数万亿。它的核心在于通过海量数据的训练,捕捉复杂的语言规律和语义信息。智能问答实现机制模型智能问答的实现机制复杂且精妙,从用户提问模型生成答案,需历经多个关键环节。用户输入问题后,模型首先对问题进行解析。利用自然语言处理技术,将问题转化为模型可理解的向量表示,这一过程包括分词、词性标注、句法分析等。接着,模型进行语义
、图数据库与知识图谱所存储的具体行业知识,领域模型更精通特定行业的知识,具备高效的语料匹配能力和知识推理能力,能够有效回答用户的提问。在医疗领域,领域模型可以帮助医生更加准确地诊断疾病。通过对大量随着人工智能技术的不断发展和应用,模型已经成为一个热门技术。模型是指模型参数数量庞大、训练数据量巨大的深度学习模型。这些模型在自然语言处理、计算机视觉、语音识别等领域取得了显著成果。然而,如何将模型与行业应用相结合,实现更加智能化的应用,是当前面临的重要问题。向量数据库和图数据库是模型与行业应用相结合的重要工具。向量数据库是一种基于向量的存储和处理数据的数据库,可以高效地存储和检索向量数据,为模型的训练和推理提供强大的支持。图数据库则是一种基于图结构的存储和处理数据的数据库,可以高效地存储和检索图结构数据,为模型的训练和推理提供更加灵活的数据结构。相较于通用模型,结合向量数据库的医疗数据进行分析和处理,领域模型可以学习到疾病与症状之间的关联,并利用这些关联对新的病例进行诊断。在金融领域,领域模型可以帮助银行识别欺诈行为。通过对大量的交易数据进行分析和处理,领域模型可以学习到欺诈行为的特点和规律,并利用这些特点对新的交易进行检测。
模型的关键技术主要包括以下几个方面:纯粹Prompt提示词法:通过模拟自然对话实现用户与AI的即时互动,具有即时性、简洁性,适用于简单查询等场景,并包含技术路由转发模块负责对用户输入的Prompt进行分类和分发。Agent+FunctionCalling机制:赋予AI模型主动提问和调用函数的能力,以获取更多信息并执行特定任务,支持多轮交互和功能执行。RAG(检索增强生成):结合向量数据库进行检索,提升语言模型的生成内容准确率和时效性,是前景广阔的新兴技术。Fine-tuning微调技术:用于优化模型以适应特定任务或数据集,通过在特定数据集上的微调来调整模型权重,提高模型在特定任务上的表现。多模态能力:模型开始支持多模态输入,能够结合文字和图片进行推理,这是人工智能领域的巨大进步。复杂推理能力:模型在复杂逻辑推理和数学问题上的能力正在提升,尽管仍存在挑战,但技术进展表明正在朝着解决这些问题的方向努力。自主智能体技术:将模型视为人脑,能够自主完成任务分解、执行、获取数据和分析等。插件技术:允许模型与外部应用协作,扩展模型的能力和应用领域。模型量化和推理引擎优化:通过模型
查询分析智能助手“求索”,旨在解决模型在金融等特定领域只是一名“实习生”的痛点。星环科技以向量数据库(vectordatabases)将新的、经常变化的信息放入向量数据库。当提问模型时,先把问题进入模型时代,星环科技在AI和数据技术领域深厚的积淀使其迅速推出了可落地的产品,在模型应用方面,授人以鱼,也授人以渔。针对通用模型无法理解行业术语、不能执行行业特定任务等痛点,星环科技推出模型持续提升和持续开发工具SophonLLMOps,不仅弥合了通用模型和行业间的巨大鸿沟,更推动数智平民化发展,让各行各业都能打造属于自己的模型。同样,星环科技于近期推出的金融模型“无涯”,以及数据转成高维向量,进行语义搜索,找到相关信息,再把它拼接成提示词发给语言模型,由模型生成答案。这样一来,“无涯”可回答研报分析,对个股、债券、基金等各类市场时间进行复盘和推演;通过“求索”模型,数据工程师及业务人员等可用自然语言与数据库“对话”,大大提高便利性,让每个人都能拥有“虚拟业务助手”。
基于模型开发应用是当前人工智能领域的热门方向,以下从应用场景、开发流程、面临挑战等方面介绍如何基于模型做应用:应用场景探索智能客服:利用模型理解用户咨询内容,自动生成准确回答。如电商平台的售后咨询,模型可快速回应商品退换货政策、物流进度等常见问题,提高客服效率与用户满意度。内容创作辅助:在写作、设计领域发挥作用。例如,帮助文案撰写人员生成创意、完善内容,为设计师提供设计理念和文案描述基础代码框架,检查代码中的语法错误并给出修改建议。开发流程明确需求:确定应用解决的具体问题和功能。如开发智能客服,需梳理常见问题类型、用户交互方式、响应速度要求等。选择模型:依据需求和资源选择合适的模型。考虑模型的性能、适用场景、可访问性、成本等。数据准备:部分场景下,需用特定数据微调模型。收集、整理相关数据,如智能客服收集历史对话数据,确保数据质量与多样性。开发集成:通过API调用或本地部署方式将模型集成到应用中。使用API简单快捷,适合初创项目;本地部署可保障数据安全与隐私,适合对数据敏感的应用。开发过程中,结合前端界面设计,打造良好用户体验。测试优化:对应用进行功能测试,检查
金融模型的应用一、风险管理信用评估:金融模型能够整合多源数据,包括传统的信贷记录、财务报表数据,以及新兴的互联网行为数据、社交媒体数据等。通过对海量数据的深度挖掘和分析,模型可以更精准地评估客户准确性和前瞻性,有效降低了信用风险。市场风险预测:利用金融模型对宏观经济数据、金融市场指标、行业动态等进行实时监测和分析,能够提前预测市场风险的变化趋势。模型可以通过对历史数据和实时数据的学习,捕捉到投资方案制定:金融模型根据客户的风险偏好、投资目标、财务状况等个性化信息,结合市场行情和投资策略,为客户量身定制投资方案。它可以快速分析海量的投资产品数据,包括股票、基金、债券、理财产品等,筛选出最适合客户的投资组合。投资组合动态调整:市场行情瞬息万变,金融模型能够实时跟踪市场动态,根据投资组合的表现和市场变化,及时调整投资组合。当某只股票的价格大幅上涨,导致其在投资组合中的占比过高时,模型会自动提示投资者进行减持,以平衡投资组合的风险;反之,当某只基金的表现持续优于同类产品,且市场前景良好时,模型会建议适当增加该基金的投资比例。三、客户服务智能客服:金融模型驱动的智能客服可以理解和回答
AI模型训练是先收集和预处理数据,接着选择并搭建模型架构,然后进行无监督预训练,再通过有监督微调或指令微调让模型适应具体任务,过程中进行优化与调参,最后对模型评估与监控。以下是一般的训练步骤:数据、组织机构名标注等,用于监督学习。数据划分:将数据划分为训练集、验证集和测试集,训练集用于模型的训练,验证集用于调整模型的超参数和评估模型的性能,防止过拟合,测试集用于最终评估模型在未见过数据上的泛化能力。模型预训练无监督学习:使用大量的无监督数据进行预训练,让模型自动学习数据中的语言模式、语义关系和知识结构。常见的无监督学习任务包括语言建模、掩码语言建模、下一句预测等,通过预测文本中的下一个单词、填补掩码位置的单词或判断两句话的先后顺序等方式,让模型学习语言的语法和语义规则。强化学习:近端策略优化(PPO)是一种强化学习算法,可用于训练智能代理程序以执行任务和决策,通过与环境互动,收集观测值、采取的动作和获得的奖励,估计优势函数,并使用PPO的目标函数来更新策略,以增加优势函数,从而使模型学习到最优的行为策略.人类反馈强化学习(RLHF):将强化学习与人类反馈相结合,让人类训练师对模型
模型提示词模板(PromptTemplates)是用于引导模型生成特定类型输出的标准化输入。以下是一些不同场景下的提示词模板示例:问答(Q&A):“什么是[主题]?请简洁地解释一下包含[要点1]、[要点2]和[要点3]。”指令遵循:“请列出制作[物品]的步骤。”创意写作:“创作一首关于[主题]的诗。”角色扮演:“如果你是[角色],在[情境]中你会怎么做?”信息检索:“查找并总结
知识检索与获取效率:企业知识库中的数据可能非常庞大和复杂,员工在查找信息时可能面临困难。对接模型后,利用模型强大的自然语言处理能力和检索功能,员工可以通过自然语言提问的方式快速获取准确的知识,无需在企业知识库对接模型是指将企业内部积累的大量知识数据与大型语言模型或其他类型的模型进行集成和交互,以实现更智能、高效的知识管理和应用,以下从对接的目的、方式和价值等方面为你详细介绍:对接目的提升大量文档和数据中手动查找。增强知识理解与分析能力:模型能够对知识库中的知识进行深度理解和分析,不仅可以提供表面的信息,还能挖掘知识之间的关联和潜在含义,帮助员工更好地理解业务知识,为决策提供更有:将企业知识库中的数据以合适的格式导入到模型中,让模型能够学习和理解这些数据。例如,将文档、表格、报告等数据进行预处理后,输入到语言模型中进行训练,使模型能够掌握企业特定领域的知识和术语。API接口对接:利用模型提供的应用程序接口(API),将企业的业务系统或知识管理平台与模型进行连接。通过API,企业系统可以向模型发送查询请求,并接收模型返回的结果,实现实时的知识交互和应用。插件或扩展
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...