大模型在金融场景应用中的应用

模型金融行业应用包括但不限于以下方面:风险评估:模型可以融合金融行业知识和数据用于风险评估,帮助金融机构做出更精准风险决策,大幅提升风险稳定性。例如,如果将各类金融数据、不同行业数据、宏观经济数据注入模型,则可以进行有效风险预警和预测,降低整个社会金融风险。市场预测:模型也可以应用在市场预测上。例如,通过融合各类金融市场数据,模型可以帮助金融机构更准确地预测市场趋势,从而更好地把握市场机会。欺诈检测:模型欺诈检测方面也具有应用价值。通过分析大量交易数据,模型可以检测出异常交易行为,及时发现并防止欺诈行为发生。用户理解和需求匹配:模型可以处理大量用户数据,更好地理解和响应用户需求,让产品和用户需求更精准地匹配。例如,基于模型技术,金融机构可以分析用户消费行为、偏好和需求,从而更好地设计产品和服务,提高用户满意度。星环无涯金融模型-TranswarpInfinity针对智能投研领域特定业务逻辑,星环科技通过预训、提示、增强、推导范式构建,实现Financial-Specific-LLM训练,推出了金融行业智能投研模型无涯

大模型在金融场景应用中的应用 更多内容

金融领域是模型应用一个热门领域,模型可以通过深度学习、机器学习等技术来处理和分析,提高金融行业效率和精度。以下是模型金融应用:风险管理:模型可以通过对历史数据分析和学习,来预测。客户服务:模型可以通过对客户数据和历史行为分析,了解客户需求和偏好,从而提供更加个性化客户服务。星环无涯金融模型-TranswarpInfinity针对智能投研领域特定业务逻辑,星环科技通过预训、提示、增强、推导范式构建,实现Financial-Specific-LLM训练,推出了金融行业智能投研模型无涯Infinity。星环科技基于模型事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度智能投研新范式。无涯金融模型强化以下几个能力:第一,针对金融行业,拥有准确理解和合理分析、债券、基金、商品等各类市场事件进行全面的复盘、传播和推演。第三,构建六类模型基础因子集,支撑复合因子策略体系,能够生成策略因子集合,构建立体归因解释体系。星环科技长期深耕金融领域,服务大量金融行业
建议。与通用模型相比,金融场景模型具有鲜明独特优势。它对金融专业知识理解和运用更加深入,能够准确处理金融领域特有的术语、业务逻辑和风险评估方式。风险评估,通用模型可能只是泛泛分析,而金融场景模型则能根据金融行业风险度量标准,精确计算出各种风险指标,为金融机构提供专业、可靠风险预警。二、多元应用场景,赋能金融全流程(一)智能投顾,开启个性化投资时代投资领域,金融场景模型应用金融场景模型:重塑金融行业新格局数字化浪潮汹涌当下,金融行业正经历着深刻变革,而金融场景模型出现,无疑成为推动这场变革关键力量。它宛如一把神奇钥匙,开启了金融领域智能化、高效化全新投资组合;而对于临近退休、追求稳健收益投资者,模型则会侧重于推荐债券、大额存单等低风险产品。这种个性化投资服务,让投资者能够复杂金融市场找到最适合自己投资路径。(二)精准营销,提升客户服务质量金融机构拓展业务时,精准找到目标客户至关重要。金融场景模型通过对海量客户数据分析,能够深入了解客户消费习惯、金融需求和潜在痛点。银行想要推广一款新理财产品,模型可以从客户资产规模
模型金融行业应用有很多,包括但不限于以下几个方面:风险管理和预测:金融行业需要对风险进行管理和预测,模型能够利用复杂算法和数据分析技术,帮助金融机构更全面地了解市场和产品风险,并预测未来做出更明智交易决策,并预测未来市场走势。模型金融行业应用非常广泛,它可以帮助机构更好地管理风险、投资管理、信用评估和欺诈检测,同时也可以帮助交易者做出更明智交易决策和预测未来市场走向。星环无涯市场动向。资产管理和投资决策:模型也可以用于资产管理和投资决策,用历史数据和市场变化,对不同资产进行分析和比较,帮助投资者做出更明智投资决策。信用评估和欺诈检测:金融机构需要对客户信用进行评估和对欺诈行为进行检测,模型可以通过各种算法和技术,对数据进行深入分析,识别和预测信用风险和欺诈行为。金融市场预测和交易决策:模型可以利用复杂算法和技术,对金融市场进行全面而深入分析,帮助交易者金融模型-TranswarpInfinity针对智能投研领域特定业务逻辑,星环科技通过预训、提示、增强、推导范式构建,实现Financial-Specific-LLM训练,推出了金融行业智能投
金融模型应用主要包括以下几个方面:风险管理:金融模型可以通过分析历史数据和实时数据,对金融市场风险进行预测和识别。比如,通过对过去金融危机事件进行分析,可以利用模型预测未来金融危机可能性,帮助金融机构制定相应风险管理策略。另外,金融模型还可以交易实时监测市场风险,并及时发出风险警报。投资决策:金融模型可以通过对历史数据和市场数据分析,生成投资决策建议。模型可以识别出市场金融模型,也被称为金融机器学习模型金融人工智能模型,利用数据和机器学习技术进行金领域预测、风险管理和决策支持等任务模型。随着金融行业数字化和数据爆炸式增长,金融模型应用越来越广泛违规行为,并及时采取相应措施。此外,模型还可以通过对客户行为分析,识别出可疑交易活动,帮助金融机构减少风险和损失。金融模型应用金融行业提供了强大预测分析和决策支持能力,可以提高金融机构组合。金融产品创新:金融模型可以利用大量数据进行金融产品创新和优化。模型可以通过对市场需求和客户行为分析,提供创新金融产品设计。比如,利用深度学习模型和自然语言处理技术,可以对客户文本
模型目前应用场景大致可以分为两类,一类是利用模型自然语言理解能力把它作为人机交互接口,即模型+应用;第二类场景是用模型来构建现有应用大脑、决策机制,利用它需求理解、分析、推理能力来构建应用,做一个中枢或者控制器。未来,每个企业都能打造自己专属模型,而企业每个个人都可以拥有自己AI助理来帮助提升效率,模型各行各业应用将会推动一次产业革命,从而提升整个社会生产效率。作为一家企业级数据基础软件开发商,星环科技致力于为行业提供模型应用构建一系列工具,以及擅长领域研发领域基础模型,助力企业抓住模型时代新机遇。为了帮助企业用户基于模型构建应用,星环科技推出了模型持续提升和持续开发工具SophonLLMOps,为用户打通从数据接入和开发、提示工程、模型微调、模型上架部署到模型应用编排和业务效果对齐全链路流程,从而实现针对模型数据和分析持续提升。同时星环科技还推出了星环无涯金融模型Infinity、数据分析模型SoLar“求索”两领域模型。星环无涯融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大理解和生成能力
,预测其可能感兴趣内容,并为其提供个性化推荐。金融领域:语言模型金融领域也有着广泛应用,如投资策略、风险评估、财务报告分析等。除了上述提到应用场景语言模型还可以应用于其他领域,如医疗语言模型应用场景非常广泛,以下是一些主要领域:自然语言处理(NLP):语言模型自然语言处理领域有广泛应用,如文本分类、情感分析、机器翻译等。计算机视觉(CV):语言模型可以应用于计算机、法律等。星环科技模型训练工具,帮助企业打造自己专属模型星环科技行业内首先提出行业大模型应用创新场景,推出相应工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己行业大模型。除此之外,星环科技行业首先推出了两行业大模型:服务于金融行业星环金融模型无涯,以及数据分析模型SoLar“求索”。视觉任务,如图像和视频分类、目标检测、图像生成等。语音识别:语言模型可以用于语音识别,将语音转化为文字,以及语音合成,将文字转化为语音。推荐系统:语言模型可以用于推荐系统,根据用户历史行为和偏好
模型金融业带来了什么模型金融领域应用,犹如一场及时雨,为金融行业发展注入了新活力。它为金融机构带来了多方面的变革,不仅提高了业务效率,还增强了风险防控能力,为客户提供了更加个性化服务,全面评估客户信用风险。(二)风险防控升级:智能守护金融安全金融行业风险防控至关重要,一旦出现风险事件,不仅会给金融机构带来巨大损失,还可能引发系统性金融风险,影响整个经济稳定。模型风险防控方面具有独特优势,它能够实时监测和分析海量金融数据,及时发现潜在风险点。反欺诈领域,模型可以通过分析客户交易行为、设备信息、地理位置等多维度数据,识别出异常交易和欺诈行为。风险预测方面,模型可以通过对宏观经济数据、行业数据、市场数据等进行深入分析,预测金融市场走势和风险变化。(三)个性化服务新体验:专属金融方案定制金融市场竞争日益激烈今天,满足客户个性化需求成为金融机构脱颖而出关键。模型通过对客户年龄、收入、风险偏好、投资目标等多维度数据分析,能够深入了解客户需求和偏好,为客户提供个性化金融产品和服务。投资领域,模型可以根据客户风险承受能力和投资目标
模型开发应用是当前人工智能领域热点,涵盖从基础开发到多行业多场景应用诸多方面,以下是相关介绍:模型开发数据收集与预处理数据收集:从多种渠道收集海量数据,包括网页、社交媒体、学术文献翻译质量和支持语言种类。计算机视觉领域图像识别与分类:对图像物体进行识别和分类,可应用于安防监控、自动驾驶等领域。例如,安防监控模型可以准确识别出人员、车辆、异常行为等。图像生成:根据给定本数据进行分词、词性标注等操作,为后续训练提供优质数据。模型应用自然语言处理领域智能客服:模型可理解用户咨询自然语言问题,并生成准确、友好回答,自动处理大量常见问题,提高客服效率和用户满意度。例如,阿里云智能客服系统利用模型技术,能够快速准确地处理海量客户咨询。机器翻译:将一种语言文本准确地翻译成另一种语言,模型处理复杂句子结构和多语言翻译方面表现出色。如谷歌翻译利用模型不断提升。金融领域:用于风险评估、投资决策等。如通过分析大量金融交易数据和市场信息,模型可以更准确地评估信用风险,为投资决策提供参考。
出最适合客户投资组合。投资组合动态调整:市场行情瞬息万变,金融模型能够实时跟踪市场动态,根据投资组合表现和市场变化,及时调整投资组合。当某只股票价格大幅上涨,导致其投资组合占比过高时,模型会机构可以采取针对性措施进行挽留,如提供专属优惠、个性化服务、定制化产品等。四、反欺诈交易欺诈检测:金融交易过程中金融模型可以实时监测交易数据,分析交易行为异常特征,及时发现潜在欺诈交易。它可金融模型应用一、风险管理信用评估:金融模型能够整合多源数据,包括传统信贷记录、财务报表数据,以及新兴互联网行为数据、社交媒体数据等。通过对海量数据深度挖掘和分析,模型可以更精准地评估客户防范欺诈风险。身份欺诈识别:金融模型结合人脸识别、指纹识别、声纹识别等生物识别技术,以及数据分析,对客户身份进行验证和识别,防止身份欺诈。例如,客户进行线上开户、大额转账等重要业务时,模型可以准确性和前瞻性,有效降低了信用风险。市场风险预测:利用金融模型对宏观经济数据、金融市场指标、行业动态等进行实时监测和分析,能够提前预测市场风险变化趋势。模型可以通过对历史数据和实时数据学习,捕捉到
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...