大模型与ai的区别

、神经网络、统计学习、自然语言处理、机器人学等多个子领域。目标是实现机器模拟和执行人类智能行为,如理解语言、学习、推理和规划。模型人工智能区别简而言之,模型是人工智能(AI)中深度学习一部分,专注于复杂任务高级模型。人工智能(AI)是涵盖更广领域,包含各种实现智能行为方法和技术。模型和人工智能(AI)虽然相关,但有不同概念和作用。什么是模型模型通常指的是具有庞大参数和复杂结构机器学习模型,特别是在深度学习中。通过海量数据训练,能够处理复杂任务,如语言生成、图像识别等。什么是人工智能(AI)?人工智能(AI)广义上指的是使机器表现出智能行为技术和理论,包括但不限于机器学习、数据分析和专家系统。人工智能(AI)涵盖范围较大,除了模型,还包括算法设计

大模型与ai的区别 更多内容

、神经网络、统计学习、自然语言处理、机器人学等多个子领域。目标是实现机器模拟和执行人类智能行为,如理解语言、学习、推理和规划。模型人工智能区别简而言之,模型是人工智能(AI)中深度学习一部分,专注于复杂任务高级模型。人工智能(AI)是涵盖更广领域,包含各种实现智能行为方法和技术。模型和人工智能(AI)虽然相关,但有不同概念和作用。什么是模型模型通常指的是具有庞大参数和复杂结构机器学习模型,特别是在深度学习中。通过海量数据训练,能够处理复杂任务,如语言生成、图像识别等。什么是人工智能(AI)?人工智能(AI)广义上指的是使机器表现出智能行为技术和理论,包括但不限于机器学习、数据分析和专家系统。人工智能(AI)涵盖范围较大,除了模型,还包括算法设计
模型模型主要区别在于其规模、复杂度和性能方面。规模:模型参数数量和大小通常比大模型要少,其层数也较浅。模型通常需要更多参数,更深层数,具有更高复杂度,以获得更好精度和效果。复杂度:小模型结构较简单,可以处理相对简单任务,而模型结构比较复杂,可以用于规模和复杂数据集和任务。训练和推理时间:小模型训练和推理时间通常较短,因为小模型参数量少、层数浅,可以更快地完成计算。相反,模型需要更多计算资源和时间来训练和推理。精度和效果:模型通常可以获得更高精度和效果,因为它们具有更多参数和自由度,够更准确地拟合数据。但是,小模型也可以获得很好精度和效果,尤其在数据资源受限情况下。可扩展性:小模型通常更易于扩展和部署,因为它们需要计算资源和存储空间少,可以在资源有限环境中运行。相反,模型需要更多计算资源和存储空间,部署时需要更多硬件和上下文环境。小模型模型都有对应应用场景。小模型适用于资源受限、对计算速度要求苛刻或用于简单任务。模型适用于处理规模和复杂任务,需要更高精度和效果。在实际应用中,根据具体需求和资源限制选择合适模型
模型模型主要区别在于其规模、复杂度和性能方面。规模:模型参数数量和大小通常比大模型要少,其层数也较浅。模型通常需要更多参数,更深层数,具有更高复杂度,以获得更好精度和效果。复杂度:小模型结构较简单,可以处理相对简单任务,而模型结构比较复杂,可以用于规模和复杂数据集和任务。训练和推理时间:小模型训练和推理时间通常较短,因为小模型参数量少、层数浅,可以更快地完成计算。相反,模型需要更多计算资源和时间来训练和推理。精度和效果:模型通常可以获得更高精度和效果,因为它们具有更多参数和自由度,够更准确地拟合数据。但是,小模型也可以获得很好精度和效果,尤其在数据资源受限情况下。可扩展性:小模型通常更易于扩展和部署,因为它们需要计算资源和存储空间少,可以在资源有限环境中运行。相反,模型需要更多计算资源和存储空间,部署时需要更多硬件和上下文环境。小模型模型都有对应应用场景。小模型适用于资源受限、对计算速度要求苛刻或用于简单任务。模型适用于处理规模和复杂任务,需要更高精度和效果。在实际应用中,根据具体需求和资源限制选择合适模型
模型模型主要区别在于其规模、复杂度和性能方面。规模:模型参数数量和大小通常比大模型要少,其层数也较浅。模型通常需要更多参数,更深层数,具有更高复杂度,以获得更好精度和效果。复杂度:小模型结构较简单,可以处理相对简单任务,而模型结构比较复杂,可以用于规模和复杂数据集和任务。训练和推理时间:小模型训练和推理时间通常较短,因为小模型参数量少、层数浅,可以更快地完成计算。相反,模型需要更多计算资源和时间来训练和推理。精度和效果:模型通常可以获得更高精度和效果,因为它们具有更多参数和自由度,够更准确地拟合数据。但是,小模型也可以获得很好精度和效果,尤其在数据资源受限情况下。可扩展性:小模型通常更易于扩展和部署,因为它们需要计算资源和存储空间少,可以在资源有限环境中运行。相反,模型需要更多计算资源和存储空间,部署时需要更多硬件和上下文环境。小模型模型都有对应应用场景。小模型适用于资源受限、对计算速度要求苛刻或用于简单任务。模型适用于处理规模和复杂任务,需要更高精度和效果。在实际应用中,根据具体需求和资源限制选择合适模型
模型模型主要区别在于其规模、复杂度和性能方面。规模:模型参数数量和大小通常比大模型要少,其层数也较浅。模型通常需要更多参数,更深层数,具有更高复杂度,以获得更好精度和效果。复杂度:小模型结构较简单,可以处理相对简单任务,而模型结构比较复杂,可以用于规模和复杂数据集和任务。训练和推理时间:小模型训练和推理时间通常较短,因为小模型参数量少、层数浅,可以更快地完成计算。相反,模型需要更多计算资源和时间来训练和推理。精度和效果:模型通常可以获得更高精度和效果,因为它们具有更多参数和自由度,够更准确地拟合数据。但是,小模型也可以获得很好精度和效果,尤其在数据资源受限情况下。可扩展性:小模型通常更易于扩展和部署,因为它们需要计算资源和存储空间少,可以在资源有限环境中运行。相反,模型需要更多计算资源和存储空间,部署时需要更多硬件和上下文环境。小模型模型都有对应应用场景。小模型适用于资源受限、对计算速度要求苛刻或用于简单任务。模型适用于处理规模和复杂任务,需要更高精度和效果。在实际应用中,根据具体需求和资源限制选择合适模型
模型模型主要区别在于其规模、复杂度和性能方面。规模:模型参数数量和大小通常比大模型要少,其层数也较浅。模型通常需要更多参数,更深层数,具有更高复杂度,以获得更好精度和效果。复杂度:小模型结构较简单,可以处理相对简单任务,而模型结构比较复杂,可以用于规模和复杂数据集和任务。训练和推理时间:小模型训练和推理时间通常较短,因为小模型参数量少、层数浅,可以更快地完成计算。相反,模型需要更多计算资源和时间来训练和推理。精度和效果:模型通常可以获得更高精度和效果,因为它们具有更多参数和自由度,够更准确地拟合数据。但是,小模型也可以获得很好精度和效果,尤其在数据资源受限情况下。可扩展性:小模型通常更易于扩展和部署,因为它们需要计算资源和存储空间少,可以在资源有限环境中运行。相反,模型需要更多计算资源和存储空间,部署时需要更多硬件和上下文环境。小模型模型都有对应应用场景。小模型适用于资源受限、对计算速度要求苛刻或用于简单任务。模型适用于处理规模和复杂任务,需要更高精度和效果。在实际应用中,根据具体需求和资源限制选择合适模型
模型模型主要区别在于其规模、复杂度和性能方面。规模:模型参数数量和大小通常比大模型要少,其层数也较浅。模型通常需要更多参数,更深层数,具有更高复杂度,以获得更好精度和效果。复杂度:小模型结构较简单,可以处理相对简单任务,而模型结构比较复杂,可以用于规模和复杂数据集和任务。训练和推理时间:小模型训练和推理时间通常较短,因为小模型参数量少、层数浅,可以更快地完成计算。相反,模型需要更多计算资源和时间来训练和推理。精度和效果:模型通常可以获得更高精度和效果,因为它们具有更多参数和自由度,够更准确地拟合数据。但是,小模型也可以获得很好精度和效果,尤其在数据资源受限情况下。可扩展性:小模型通常更易于扩展和部署,因为它们需要计算资源和存储空间少,可以在资源有限环境中运行。相反,模型需要更多计算资源和存储空间,部署时需要更多硬件和上下文环境。小模型模型都有对应应用场景。小模型适用于资源受限、对计算速度要求苛刻或用于简单任务。模型适用于处理规模和复杂任务,需要更高精度和效果。在实际应用中,根据具体需求和资源限制选择合适模型
模型模型主要区别在于其规模、复杂度和性能方面。规模:模型参数数量和大小通常比大模型要少,其层数也较浅。模型通常需要更多参数,更深层数,具有更高复杂度,以获得更好精度和效果。复杂度:小模型结构较简单,可以处理相对简单任务,而模型结构比较复杂,可以用于规模和复杂数据集和任务。训练和推理时间:小模型训练和推理时间通常较短,因为小模型参数量少、层数浅,可以更快地完成计算。相反,模型需要更多计算资源和时间来训练和推理。精度和效果:模型通常可以获得更高精度和效果,因为它们具有更多参数和自由度,够更准确地拟合数据。但是,小模型也可以获得很好精度和效果,尤其在数据资源受限情况下。可扩展性:小模型通常更易于扩展和部署,因为它们需要计算资源和存储空间少,可以在资源有限环境中运行。相反,模型需要更多计算资源和存储空间,部署时需要更多硬件和上下文环境。小模型模型都有对应应用场景。小模型适用于资源受限、对计算速度要求苛刻或用于简单任务。模型适用于处理规模和复杂任务,需要更高精度和效果。在实际应用中,根据具体需求和资源限制选择合适模型
模型模型主要区别在于其规模、复杂度和性能方面。规模:模型参数数量和大小通常比大模型要少,其层数也较浅。模型通常需要更多参数,更深层数,具有更高复杂度,以获得更好精度和效果。复杂度:小模型结构较简单,可以处理相对简单任务,而模型结构比较复杂,可以用于规模和复杂数据集和任务。训练和推理时间:小模型训练和推理时间通常较短,因为小模型参数量少、层数浅,可以更快地完成计算。相反,模型需要更多计算资源和时间来训练和推理。精度和效果:模型通常可以获得更高精度和效果,因为它们具有更多参数和自由度,够更准确地拟合数据。但是,小模型也可以获得很好精度和效果,尤其在数据资源受限情况下。可扩展性:小模型通常更易于扩展和部署,因为它们需要计算资源和存储空间少,可以在资源有限环境中运行。相反,模型需要更多计算资源和存储空间,部署时需要更多硬件和上下文环境。小模型模型都有对应应用场景。小模型适用于资源受限、对计算速度要求苛刻或用于简单任务。模型适用于处理规模和复杂任务,需要更高精度和效果。在实际应用中,根据具体需求和资源限制选择合适模型
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...