国内大模型的应用场景

语言模型应用场景非常广泛,以下是一些主要领域:自然语言处理(NLP):语言模型在自然语言处理领域有广泛应用,如文本分类、情感分析、机器翻译等。计算机视觉(CV):语言模型可以应用于计算机,预测其可能感兴趣内容,并为其提供个性化推荐。金融领域:语言模型在金融领域也有着广泛应用,如投资策略、风险评估、财务报告分析等。除了上述提到应用场景语言模型还可以应用于其他领域,如医疗、法律等。星环科技模型训练工具,帮助企业打造自己专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己行业大模型。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业星环金融模型无涯,以及数据分析模型SoLar“求索”。视觉任务,如图像和视频分类、目标检测、图像生成等。语音识别:语言模型可以用于语音识别,将语音转化为文字,以及语音合成,将文字转化为语音。推荐系统:语言模型可以用于推荐系统,根据用户历史行为和偏好

国内大模型的应用场景 更多内容

模型应用场景广泛,覆盖了多个领域,包括但不限于:自然语言处理:如文本生成、机器翻译、情感分析、问答系统等。计算机视觉:如图像分类、目标检测、图像生成等。语音识别与合成:实现高质量语音转文字和文(InfinityIntelligence),是一款基于星环模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源企业级垂直领域问答产品。
AI模型应用场景非常广泛,涵盖了多个行业和领域。以下是一些具体应用场景:金融领域风险评估与信用评级:通过对海量金融数据分析,包括客户交易记录、信用历史、收入情况等,AI模型能够更准确地投资建议和组合优化方案,帮助投资者做出更明智投资决策。金融欺诈检测:识别和防范各类金融欺诈行为,如信用卡盗刷、保险欺诈、洗钱等。通过对交易数据和用户行为实时监测和分析,AI模型能够发现异常模式和和兴趣,推荐适合学习资源,如教材、课件、视频、练习题等,丰富学生学习素材,提高学习资源利用效率。虚拟教学环境与仿真实验:创建虚拟教学环境和仿真实验场景,让学生在虚拟世界中进行实践操作和体验,提高、公众舆情等,及时了解公众意见和诉求,为政府决策提供参考依据,帮助政府部门更好地应对突发事件和社会热点问题。公共安全与应急管理:在公共安全和应急管理领域发挥重要作用,如犯罪预测、灾害预警、急救援等评估客户风险水平和信用等级,为金融机构贷款审批、信用卡发放等业务提供决策依据,降低违约风险。投资决策辅助:分析市场行情、宏观经济数据、公司财报等信息,预测股票、债券等金融资产价格走势,为投资者提供
模型目前应用场景大致可以分为两类,一类是利用模型自然语言理解能力把它作为人机交互接口,即模型+应用;第二类场景是用模型来构建现有应用大脑、决策机制,利用它需求理解、分析、推理能力来构建应用,做一个中枢或者控制器。未来,每个企业都能打造自己专属模型,而企业每个个人都可以拥有自己AI助理来帮助提升效率,模型在各行各业应用将会推动一次产业革命,从而提升整个社会生产效率。作为一家企业级数据基础软件开发商,星环科技致力于为行业提供模型应用构建一系列工具,以及在擅长领域研发领域基础模型,助力企业抓住模型时代新机遇。为了帮助企业用户基于模型构建应用,星环科技推出了模型持续提升和持续开发工具SophonLLMOps,为用户打通从数据接入和开发、提示工程、模型微调、模型上架部署到模型应用编排和业务效果对齐全链路流程,从而实现针对模型数据和分析持续提升。同时星环科技还推出了星环无涯金融模型Infinity、数据分析模型SoLar“求索”两领域模型。星环无涯融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大理解和生成能力
图数据库应用场景非常广泛,可以应用于各个行业。以下是一些常见应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。凭借优异产品性能和出色落地表现,StellarDB获得了多家行业权威机构认可,在数据产业峰会和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂商品与用户之间关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂数据结构和大量数据时比传统数据库具有更高性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级数据基础软件,围绕数据集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件上,中国信通院重磅发布了2022数据十关键词,星环科技作为图计算平台国内代表厂商入选信通院“图计算平台”关键词图谱。此前也通过了中国信通院图数据库和图计算平台基础能力两项专项测评。同时在全球著名
医疗模型应用场景非常广泛,包括但不限于以下几个方面:生命科学领域:模型可以用于进行蛋白质语言理解和生成任务,以及赋能DNA/RNA等生命组学计算,从而辅助生物医学研究开发工作。药械研发领域:、智能化。医疗保险领域:模型可以助力医疗保险数据处理自动化和信息咨询,落地场景向智能核保核赔延伸。医学教育领域:模型可以模拟不同类型病人与医生进行对话,带来提高学生知识、技能和能力新机会。随着人工智能技术不断发展,医疗模型将会在更多领域得到应用,为医疗行业发展带来更多可能性。模型可以服务于药品和器械从研发到上市各个环节,包括药物发现、临床前研究、临床试验、注册申请、上市后再评价等。医疗问答和智能问诊领域:模型可以通过对话方式回答用户医疗健康问题,提高问诊准确性和智能化水平。辅助诊疗和临床决策领域:模型可以预测疾病风险、生成诊断和治疗建议,为临床决策提供支持。个人健康管理领域:模型可以帮助个人在非医院场景中解决健康问题,推动个人健康管理迈向主动化、个性化
多态模型应用场景广泛,涵盖自然语言处理、计算机视觉、多媒体处理、跨模态搜索推荐、智能办公、电商、娱乐、教育、自动驾驶、医疗、智能安防、金融、人机交互以及虚拟现实等领域。以下是一些主要应用场景历史喜好信息,在不同模态数据中提供个性化推荐,如根据看过电影推荐相关商品。跨模态问答:在问答系统中,多模态模型能够处理和回应跨模态查询,如图像和文本组合查询。办公自动化:多模态模型应用偶像等场景中,创造沉浸式游戏体验和支持虚拟偶像实时交互。教育:在教育领域,多模态模型提供生动学习资源和个性化学习建议,辅助智能教学。医疗健康:多模态模型在疾病诊断、治疗方案制定等场景中,结合医学影像、病历文本和生理信号等数据,实现更准确诊断。智能安防:在视频监控、异常行为检测等场景中,多模态模型结合图像、声音和行为分析等数据,实现智能化监控。金融:多模态模型在风险评估、欺诈检测等场景中,分析用户交易记录、行为模式等数据,识别潜在金融风险。人机交互:在智能语音助手、智能机器人等场景中,多模态模型结合语音、图像和文本信息,实现更自然、智能人机交互。虚拟现实与增强现实:多模态模型在VR和AR领域中,结合多种模态数据,提供更加沉浸式体验。
数据要素应用场景非常广泛,涉及多个行业和领域。以下是一些具体应用场景:智能制造:在汽车制造企业中,数据要素被用来提升智能制造水平。通过融合设计、仿真、实验验证数据,培育数据驱动型产品研发新模式通行效率。应急管理:数据要素在应急管理中应用,通过对多元数据分析,建立具有安全态势感知能力数字城市和数字乡村,强化社会风险研判和预警能力。气象服务:数据要素在气象服务中应用,通过打通车企、第三方平台、运输企业等主体间数据壁垒,促进道路基础设施数据、交通流量数据、驾驶行为数据等多源数据融合应用,提高智能汽车创新服务水平和主动安全防控能力。智慧城市:数据要素在智慧城市建设中应用,通过数据高效利用,推动城市治理现代化。绿色低碳:数据要素在绿色低碳领域应用,通过数据分析和应用,推动绿色低碳发展。识别,优化信贷业务管理和保险产品设计。科技创新:数据要素在科技创新领域应用广泛,包括数字广告、图像识别、语言识别、数字信贷、无人驾驶、人脸识别、机器翻译、医学图像处理等。医疗健康:在医疗行业,数据要素
随着数据快速增长和计算能力提升,模型在各个领域发挥着越来越重要作用。下面将介绍几个常见模型应用场景。自然语言处理(NLP):在自然语言处理领域,模型被广泛用于语言模型、机器翻译、问答模型训练工具,帮助企业打造自己专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代数据集上进行训练,模型可以提取更深入和高级特征,从而提高图像识别和理解准确性。金融风险管理:在金融领域,模型应用于风险预测、市场预测和欺诈检测等方面。通过处理大量市场数据和交易记录,模型可以分析市场趋势和风险,并提供有力决策支持。医疗诊断:在医疗领域,模型应用于疾病诊断、影像解读以及药物研发等方面。通过处理大量患者数据和医学图像,模型可以辅助医生进行准确诊断和治疗。交通与在各个领域都有广泛应用。通过处理规模数据集和复杂模型模型能够提供更准确和智能分析和决策支持。随着技术不断发展,模型将在更多领域发挥重要作用,并对社会经济发展带来积极影响。星环科技提供
数据湖作为一种集中存储海量、多源、异构数据存储库,具有广泛应用场景,以下是一些主要应用场景:数据分析与洞察商业智能与报表:企业可以将来自不同业务系统数据汇聚到数据湖中,如销售数据、客户进行复杂数据清洗和转换。通过交互式查询、数据挖掘等手段,发现数据中潜在模式、趋势和关联关系,为进一步深入分析和建模提供基础。人工智能与机器学习模型训练:数据湖能够提供丰富规模、多维度数据,为机器学习和深度学习模型训练提供充足素材。数据科学家可以从数据湖中获取各种类型数据,如文本、图像、音频等,进行特征提取和模型训练,用于图像识别、语音识别、自然语言处理等各种人工智能应用。预测分析:基于数据湖中历史数据和实时数据,结合机器学习算法,构建预测模型,对未来趋势、事件或行为进行预测。例如,预测市场需求、客户流失、设备故障等,帮助企业提前做好规划和应对措施。物联网与工业互联网,为信贷决策提供依据。市场风险预测:通过收集和分析金融市场数据、宏观经济数据、企业财务数据等,构建市场风险预测模型,对金融市场波动、利率变化、汇率风险等进行预测和分析,帮助金融机构制定风险管理策略
高性能是图数据库重要的特点之一。与传统关系型数据库相比,图数据库在处理大规模图数据时,具有更快的读写速度和更强大的查询能力。以下是一些高性能的图数据库TranswarpStellarDB的介绍:TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。高性能图数据库StellarDB的优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩...
企业数字化转型面临跨模型开发复杂、IT架构复杂(运维复杂;运维成本高;跨平台开发成本高;容易形成数据孤岛;数据流转复杂,一致性难以保障;数据存储冗余;计算/存储资源之间存在竞争)等困难,因此需要多模型支撑,引入多模型数据库。星环科技一直致力于国产化数据库的自主研发,打造了自主可控的高性能分布式数据库ArgoDB。作为一款领先的多模型数据库,ArgoDB支持关系型、搜索、文本、对象、图等10种数据模型,能够帮助用户简化系统架构、减少开发运维成本、提升用户体验和数据洞察力,满足更多复杂业务需求。ArgoDB可以替代Hadoop+MPP混合架构。支持标准SQL语法,提供多模分析、实时数据处理、存算解耦、混合负载、数据联邦、异构服务器混合部署等先进技术能力。通过一个ArgoDB数据库,就可以满足数据仓库、实时数据仓库、数据集市、OLAP、AETP、联邦计算等各种需求。不同于传统方案为不同类型的数据单独部署和使用不同的数据库产品,基于星环科技ArgoDB的多模型统一技术架构,用户可以实现不同模型数据的统一存储管理,并且用户只需用一句SQL就能同时访问这3种存储模型进行联合分析,替代了之前3段代码...
行业资讯
边缘计算平台
Sophon是星环科技推出的解决多模态数据集成和治理过程中的边缘化、智能化的云端~边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云~边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。Sophon在智能制造、智能安防、智能工地、智能交通、智能城市、智能校园、智能加油站等城市治理、设备可预测性维护等云边一体场景有着广泛的应用。智能制造方面,星环科技联合行业专家和合作伙伴,形成“平台、经验、应用”三轮驱动的服务模式,为化工、钢铁、冶金、设备制造、风电、光伏、发电等多个领域用户,提供包括数字孪生、仪表数据管理、实...
什么是时空数据库?时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。时空数据库典型应用场景时空数据库具有广泛的应用场景,主要涵盖以下几个方面:交通运输领域:时空数据库可以应用于公路、铁路、航空等交通模式的时空分析和智能调度,如交通拥堵预测、路况优化、航班调度等。城市规划和管理:时空数据库可以应用于城市规划、交通规划、城市公共服务等领域,通过分析城市的时空数据,提高城市运营效率和公共服务水平,如...
随着全球数字化进程加速,数据资源的战略价值日益凸显,《“十四五”大数据产业发展规划》中指出:“鼓励开展数据治理相关技术、理论、工具及标准研究,培育数据治理咨询和解决方案服务能力,提升行业数据治理水平。”星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,构建明日数据世界。在数据治理方面,星环科技能够从数据标准管理、数据质量管理、数据模型管理、数据架构管理、元数据管理、主数据管理、数据分级与安全管理等多方面,提供数据治理解决方案,帮助客户更好地实现数字化转型。星环科技数据治理整体解决方案框架包括了战略、机制、能力和平台四块,我们的愿景和目标,是为企业开展体系化数据治理、打造企业核心数据资产和持续赋能企业的业务价值创造。在机制层,可以为客户提供组织架构、管理制度、工作流程和成熟度评估等咨询服务,同时在每一次项目中,都为客户提供丰富的数据治理相关培训。在能力层,为企业的数据标准、数据质量、数据安全、数据生存周期、数据应用以及数据架构提供咨询和实施服务。未来星环科技还将一如既往发挥自身技术优势,赋能企业实现高效的数据治理...
TranswarpDefensor是星环科技自主研发的数据安全管理平台,具备五大核心能力,包括了:敏感数据识别与分类分级,帮助企业全面梳理敏感资产,并绘制分类分级资产地图;提供数据脱敏和水印等能力,让敏感数据可以脱敏后服务业务,并在发生泄露后可以追踪溯源;能识别敏感数据操作并进行监测,能够识别流动中的敏感数据并触发对应的管理策略;大数据平台和数据库的操作审计,避免违规操作带来的数据安全风险;基于GB/T37964-2019《信息安全技术个人信息去标识化指南》《信息安全技术个人信息去标识化效果分级评估规范》实现自动化个人信息识别、去标识化以及去标识化评级,实现企业个人信息资产保护。基于以上五大核心能力,Defensor能够帮助企业了解内部数据敏感信息的资产地图,发现潜在风险,并监控企业重要数据的合规使用;同时,也能对企业敏感数据进行分类分级,通过数据脱敏、水印等方式对数据进行事前事后的保护,防止数据泄露或能够在数据泄露后做到可以溯源追踪。目前Defensor在交通、医疗、金融、高校等多个领域有落地案例。在车联网领域,随着智能化发展,云端产生了大量个人隐私数据,为了避免个人隐私泄露,防止不...
TranswarpStellarDB是一款为企业级图应用而打造的分布式图数据库,用于快速查找数据间的关联关系,并提供强大的算法分析能力。StellarDB克服了万亿级关联图数据存储的难题,通过自定义图存储格式和集群化存储,实现了传统数据库无法提供的低延时多层关系查询,在社交网络、金融领域都有巨大应用潜力。TranswarpStellarDB具有以下优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的...
行业资讯
隐私计算平台
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台提供多种开箱即用的工具,方便用户在隐私场景下进行数据处理、分析、特征工程等工作,并快速建立AI模型。加密网络通信模块负责节点间大量多批次加密信息的传输,多种加密安全手段和优异的通信架构,确保平台在大数据量下也能获得卓越的性能。星环科技基于隐私计算的数据流通产品支持多方AI协作,可以提供端到端的数据安全防护、隐私保护与隐私计算技术;提供基于硬件安全防护的可信计算提供卓越的联合建模能力,保障数据可用不可见;提供基于零信任架构和TEE技术,保证企业数据的安全和合规使用的能力。支持隐私查询、隐私求交、匿踪查询、横纵向学习等多种多个参与方的隐私计算场景;内置联邦风控、联邦反欺诈、联邦推荐等通用模板,帮助企业迅速借助数据流通建立个性化业务。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水...
图数据库是一种用于存储和管理图数据的数据库,其数据模型采用图结构,由节点和边组成,并可以存储节点和边的属性,实现复杂关系的存储和查询。图数据库广泛应用于社交媒体、金融、物流、医疗、能源等领域。以下是图数据库主要应用场景:社交媒体:图数据库可以对社交网络中的关系和行为进行建模和分析,帮助社交媒体企业更好地了解用户需求和行为,实现精准定向广告和推荐。金融:图数据库可以帮助金融机构识别和预测欺诈行为、洗钱、风险管理等,从而提高金融业务的安全性和可靠性。物流:图数据库可以管理物流中的运输网络和物流信息,实现物流运输过程的可视化、实时监控和优化。医疗:图数据库可以帮助医疗机构分析医疗记录、患者病史、药品治疗效果等数据,优化医疗服务流程,支持医疗决策和疾病预测。能源:图数据库可以帮助能源企业管理能源产业链上的复杂关系和数据,提高能源效率、降低成本、控制风险。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据库StellarDB,兼容openCy...
TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。StellarDB优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图...