垂直领域大模型框架

垂直领域模型是指专注于特定行业或应用领域的人工智能模型。它们在特定的上下文中表现出更高的精度和深度,通常在特定的、具有专业性质的数据集上进行训练,以适应特定业务需求。垂直领域模型的一些关键特点:领域专精:垂直模型针对特定行业或应用,如医疗、金融、教育等,提供更精准、专业的解决方案。数据针对性:垂直模型的训练依赖于特定领域的专业数据,这使得模型在特定场景下的表现更为出色。定制化服务:垂直模型能够满足客户对定制化需求和工程化落地能力的追求。快速响应:由于专注于特定领域垂直模型能够快速响应市场变化,提供实际应用价值。资源效率:相比于通用模型垂直模型通常需要较少的计算资源和时间。领域专业性:垂直领域模型经过专门的训练,能够更好地理解和处理特定领域的知识、术语和上下文。高质量输出:由于在特定领域中进行了优化,垂直领域模型在该领域的输出质量通常比通用模型更高。特定任务效果更好:对于特定领域的任务,垂直领域模型通常比通用模型表现更好。垂直领域模型的商业化侧重于针对特定行业或应用的深度定制,它们在特定领域积累了丰富的专业知识,能够提供更精准、更专业的解决方案。这些模型在实际应用中的价值体现在能够直接解决行业痛点,提高效率,降低错误率。

垂直领域大模型框架 更多内容

垂直模型是特定领域或行业中应用的规模机器学习模型,专注于处理该领域内的特定任务或数据。例如,在医疗、生物信息学、金融等垂直行业,垂直模型可以用于疾病预测、金融风险评估等任务。与通用模型相比,垂直模型更具针对性,性能上往往更为优化。垂直模型的优势相比于通用模型垂直模型在几个方面有其独特的优势:数据专注性:专注于特定领域的数据,训练过程中可以更好地捕捉领域特性和细微差异。性能优化:利用领域知识进行模型和算法的优化,提高准确性和效率。实用性强:直接应用于特定行业的具体问题,提供更高效的解决方案。法规和合规性:在受规管行业,如医疗和金融,更容易满足行业特定的法规和合规要求。垂直模型在实际应用中,通过利用海量的行业数据和专业知识,实现了更精确、更高效的任务处理能力。垂直模型的应用场景有哪些?垂直模型在不同领域的应用广泛,如:医疗领域:疾病诊断:通过分析医学影像、电子病历和基因数据,辅助医生进行疾病诊断。个性化医疗:根据患者的特定基因信息和病史数据,提供个性化的治疗方案。金融领域:风险评估:用于信用评分、贷款审批以及金融欺诈检测,通过分析大量的财务数据来评估风险。投资分析
行业资讯
垂直模型
垂直模型是指针对特定场景或任务进行优化设计的深度学习模型,它们专注于某一领域或行业,如语音识别、自然语言处理、图像分类等。与通用模型相比,垂直模型在特定领域的表现更为出色,能够更好地解决该领域内的复杂问题星环科技在构建垂直模型方面有着深入的研究和应用,特别是在金融行业。这类模型的优势在于它们能够利用特定领域的专业知识和数据,提供更精准、更专业的服务。例如,星环科技的垂直模型可以应用于金融风险评估、投资决策支持等场景,通过聚焦于金融行业的数据和知识,能够在专业性、准确性和效率上提供更优的解决方案。在星环科技的模型技术体系中,垂直领域模型与通用语言模型相辅相成,共同构成了其在金融行业应用探索的核心技术支撑。这些垂直模型不仅能够处理多样化数据集上的任务,还能针对金融行业的特殊需求进行优化,从而实现更高效的数据分析和决策支持。
垂直领域专属模型的训练:让AI更懂你的世界在人工智能领域,一个显著的趋势正在形成:通用模型正在向垂直领域专属模型演进。这种转变不仅体现了AI技术的进步,更反映了市场对专业化智能服务的迫切需求。垂直领域专属模型通过在特定领域进行深度训练,能够提供更精准、更专业的服务,正在重塑各行各业的发展格局。一、垂直领域模型的崛起通用模型在处理广泛任务时表现出色,但在面对专业领域时往往力不从心。以医疗领域为例,通用模型可能无法准确理解医学术语,难以处理复杂的病历数据。而经过专业训练的医疗领域模型,不仅能理解专业术语,还能辅助医生进行疾病诊断和治疗方案制定。垂直领域模型的训练需要特定的数据集和专业知识。在金融领域模型训练需要大量的历史交易数据、财务报表和市场分析报告。这些数据经过清洗和标注后,通过深度学习算法,使模型能够理解金融市场的运行规律,提供投资建议和风险评估。训练垂直领域模型面临数据获取直接影响模型性能。在智能制造领域,采用迁移学习和增量学习策略,可以使模型快速适应新的生产环境和工艺要求。通过持续优化训练策略,模型能够保持较高的准确性和适应性。三、应用前景与挑战垂直领域模型正在多个行业
行业资讯
垂直行业模型
无所不能。然而,随着各行业数字化转型的深入,人们逐渐发现,模型这位“全才”在面对一些特定行业的复杂问题时,有时也会显得力不从心。这时,垂直行业模型便应运而生。垂直行业模型,是专门针对特定行业或领域进行深度训练的人工智能模型。与模型追求广泛的通用性不同,它更专注于某一领域的专业知识和业务流程,就像一位深耕某一领域多年的专家,对该领域的各种细节和特殊需求了如指掌。垂直行业模型优势垂直行业模型之所以在当今的人工智能领域备受青睐,成为众多企业和机构竞相追捧的“香饽饽”,主要是由于其具备以下几大突出优势:计算资源需求低训练模型往往需要投入巨额的成本,其中计算资源的消耗是一个重要方面。而垂直行业模型业务流程、专业术语和应用场景,模型虽然具备强大的通用性,但在处理这些特定领域的问题时,难以做到精准和深入。垂直行业模型则可以针对特定行业的数据进行深度挖掘和训练,从而提供更贴合行业需求的定制化服务。以医疗领域为例,通过对大量医学文献、病例数据的学习,垂直行业模型能够辅助医生进行疾病诊断、药物研发等工作,提供专业的医疗建议;在金融领域,它可以对市场数据、风险评估指标等进行分析,为投资决策提供有力支持
模型训练框架是深度学习领域的重要组成部分,尤其对于处理规模语言模型。这些框架通过优化算法、数据处理和硬件利用,提高了训练效率并降低了成本。模型设计语言模型通常采用Encoder-Decoder评估与优化在预训练和微调之后,通过验证集或测试集评估模型性能。如果表现不佳,则可能需要调整超参数、增加数据量或更改架构。随着研究的进步和新框架的发展,语言模型正变得越来越有效且实用。然而,面对计算资源架构,以实现理解和生成任务的兼顾。训练过程训练过程涉及获取大量样本集(如预训练阶段),对样本进行Token化,并使用分布式策略进行并行化处理。此外,使用动态精度缩放和梯度累积可以进一步提高效率。模型限制时仍需继续探索如何降低开销同时保持性能水平。未来的规模深度学习工作将继续关注提高效率的同时保持或增强准确性,并寻找适用于各种应用的有效解决方案。
垂直行业大模型是专门针对特定行业或领域开发的人工智能模型,它们结合了行业知识和场景化处理能力,以实现更精准和高效的知识管理与应用。行业专注性:垂直模型专注于特定行业或应用领域,如医疗、金融、教育等:由于专注于特定领域垂直模型能够快速响应市场变化,提供实际应用价值。资源效率:相比于通用模型垂直模型通常需要较少的计算资源和时间。应用示例:在医疗领域垂直模型能够辅助医生进行疾病诊断、药物研发。在金融领域垂直模型可以进行风险评估、信用评分、投资策略分析。技术结合:垂直模型不是简单微调,而是由多种技术结合特定场景数据集具备的垂直能力。,提供更精准、专业的解决方案。数据针对性:这些模型在特定的、具有专业性质的数据集上进行训练,以适应特定业务需求。定制化服务:垂直模型能够满足客户对定制化需求和工程化落地能力的追求。快速响应市场变化
无涯·问知是一款基于星环科技自研预训练模型无涯Infinity和向量数据库Hippo、图数据库StellarDB构建的企业级垂直领域问答知识库应用。无涯·问知支持不限长度的音视频图文等多模态数据快速预警、设备故障诊断等丰富的业务场景中。主要产品优势体现在:精准问答能力,减少模型幻觉基于向量索引技术的信息检索:基于星环自研向量数据库Hippo的向量索引技术,能够在庞大的数据集中快速精准地召回相关信息,提升了信息检索的速度和准确性,使模型在处理查询时更加高效。利用图计算进行深度关联分析:利用图计算框架,无涯·问知能够识别实体间的多层次关系,从而进行深度的关联分析,提供了更为深入和准确的洞察结论。确保答案可验证性:无涯·问知的所有回答均提供标注信息来源,确保答案的透明度和可验证性,有效避免模型幻觉。多模数据来源,提升回答丰富度广泛的数据源:覆盖官方资讯、门户类网站、自媒体财经等各类信息源入库,且支持自动化文档切片及向量化处理,配合自研的RAG框架,可实现知识的精准召回。无涯·问知具备了泛行业的知识获取能力、专业的内容理解能力及数据分析能力,可用于市场研究分析、企业供应链分析、法律风险
模型应用框架是一套用于构建和部署模型应用的体系结构和工具集,它为开发者提供了一种标准化、高效的方式来利用模型的能力解决实际问题。以下是一些常见的组成部分和功能特点:模型模型集成:该框架能够方便地接入各种主流的模型。这需要提供模型加载、初始化和配置的功能,确保模型能够在应用环境中稳定运行。模型管理:包括模型版本控制、模型的存储与加载优化、模型的分布式部署与协同等。例如,在模型更新时,可以通过版本控制机制方便地切换不同版本的模型;在分布式部署中,实现模型在多个计算节点上的高效协同工作,提高处理规模请求的能力。数据层数据接入与预处理:支持多种数据来源的接入,如数据库、文件系统、实时数据流等。在数据接入后,进行数据清洗、转换、标注等预处理工作,以满足模型训练和推理的要求。数据存储与管理:提供数据的持久化存储功能,如使用关系型数据库或分布式存储系统存储训练数据、中间结果和应用数据等。同时,具备数据索引和查询功能,方便快速检索和获取所需数据。应用服务层应用开发接口(API):对外提供一组简洁、易用的API,开发者可以通过这些API向模型发送请求并获取结果,从而构建各种应用。任务
向量数据库在模型中扮演了非常重要的角色,特别是在垂直领域服务中。模型虽然具有处理一般性问题的能力,但在垂直领域服务中,其知识深度、准确度和时效性往往有限。向量数据库结合模型和自有知识资产,能够垂直模型成为了行业发展的切入点。而向量数据库则是这些行业大模型具备行业知识能力的关键所在。通过向量数据库,行业大模型能够更有效地处理非结构化数据,从而实现对行业知识的深入理解和应用。AI模型的产生显著增强垂直领域的AI能力。这是因为向量数据库能够存储和处理向量数据,提供高效的相似度搜索和检索功能,从而为垂直领域提供更精准、更深入的解答。随着越来越多的行业开始探索和应用AI技术,建立在不同行业的需要经历大量反复的训练和调试,其中涉及的数据处理是一个重要环节。非结构化数据在AI应用中占据重要地位,但其查找需求和数据量级都远大于结构化数据。向量数据库能够处理这些非结构化数据,通过近似查进行模糊匹配,提供概率上符合条件的答案,从而满足模型对非结构化数据处理的需求。
近年来,随着数字经济的蓬勃发展,数据跨境活动日益频繁,数据处理者的数据出境需求快速增长。为规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全、自由流动,国家互联网信息办公室公布了《数据出境安全评估办法》,9月1日起施行。《数据安全出境评估办法》构建了我国数据出境安全评估的制度,然而企业在具体落地方面,还存在诸如数据分类分级;重要数据识别、存储、管理;数据安全监督;敏感数据防泄露等实际困难,国内迫切需要落实数据安全出境的企业。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,构建明日数据世界。在数据安全与流通方面,星环科技具备一系列产品和解决方案。针对有数据跨境需求的企业,星环科技可以提供一套可落地的企业数据安全出境合规解决方案,为企业提供数据跨境一站式服务,助力企业高效、合规的开展数据流通业务。以某智能车企云端车联网全球化数据安全合规案例为例,针对客户面对的系统内存在大量个人隐私数据,但是没有资产地图;缺乏数据分类分级策略;缺乏个人隐私数据使用、流转的监测与防护;需要敏感资产风险评...
随着科技和信息技术的快速发展,时空数据已经成为重要的技术支撑和决策工具。与此同时,国内也出现了不少优秀的国产时空数据库产品,不仅在空间分析、时序分析等方面实现了卓越的表现,同时也在存储管理、可视化展示等方面有着出色的成果。不少时空数据库产品已实现了高可靠性、高性能和高稳定性的功能,在交通运输、城市规划、GIS和物流供应链等领域都有着广泛的应用。其中星环科技的分布式时空数据库-TranswarpSpacture就是其中一款优秀的时空数据库产品。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。产品优势原生空间:时空数据类型,针对空间时空数据的特定优化。兼容OGC标准:提供丰富的分析函数,具备复杂分析挖掘能力。支持SQL:基于SQL完成空间分析和轨迹分析,降低产品使用门槛。兼容Po...
行业资讯
数字政府建设
近日,领先的IT市场研究和咨询公司IDC发布2022年数字政府百强榜,梳理出数字政府领域领先的技术供应商,评估了技术提供商的市场能力及市场份额。星环科技作为企业级大数据基础软件开发商,成功入选IDC数字政府百强榜“大数据及数据治理”模块。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。在政府领域,星环科技通过智慧政务数字底座为政府数字化转型建设提供计算、存储、算法等基础能力支撑,归集业务数据,优化业务流程,治理出有价值的数据资源,进行专题分析沉淀数据资产,服务部门之间数据共享与业务协同,服务领导决策与政策制定,服务公众、企业便捷办事。公司产品已被多个部委或省市机关部门使用,助力构建数字化政府,提升治理效率。比如星环科技基于数据云平台TDC为建设上海市数据资源平台提供了底层支撑,将70多个委办局以及16个区县业务库的结构化和非结构化数据进行归集,构建三级数据共享交换体系,保障数据安全,支撑“一网通办”等数据服务能力。此外,根据不...
星环SophonP²C是企业级隐私计算平台,拥有多项性能及安全认证,平台支持不同场景的隐私计算需求,包括横纵向联邦学习、多方安全计算、基于差分隐私的数据发布、匿踪查询等,为多方数据安全协作提供完整的平台底座。SophonP²C可用于解决跨组织协作时无法安全利用各方数据的难题,助力数据流通应用的合法合规。在保障隐私的前提下,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期,提供多种开箱即用的工具,方便用户进行数据处理、分析、特征工程等工作,可快速进行多方数据统计、分析建模和应用工作。平台拥有的多种适应不同安全和通讯环境的加密安全手段和通信架构,为跨组织的数据协作提供安全、可靠、高效的平台支持。分布式隐私计算平台SophonP²C产品优势:支持多种隐私计算框架,平台易用易部署1.采用同态加密、差分隐私、秘密分享、不经意传输等隐私技术,覆盖联邦学习(FL)、多方安全计算(MPC)、匿踪查询(PIR)、隐私求交(PSI)等多种隐私计算功能。2.支持大数据规模的隐私计算场景,支持亿级数据进行联邦学习、多方安全计算和隐私求交。3.提供页面可视化安装部署,并支持实体部署、容器部署、...
利用星环科技数据云平台TDC打造的基于PaaS平台的绿色轨道交通线网指挥中心,为轨交集团打造技术中台、数据中台、模型中台、业务中台。与传统模式相比,PaaS模式采取集约化部署,能大大提高资源利用率;可为开发人员提供隔离的租户环境,灵活选择所需大数据与AI能力,进行探索分析和数据挖掘。技术中台:统一资源管控,灵活资源分配,快速资源申请与部署。数据中台:全量数据接入;面向应用主题的指标计算与规范化数据存储。模型中台:基于人工智能、深度学习的算法模型,支撑业务分析、评估、与决策。业务中台:采用微服务架构,串联系统功能,打通整合业务应用。通过采集实时能耗、电能质量、设备状态等实时数据和客流信息、列车运营信息、基础信息等非实时数据,基于星环科技智能分析工具Sophon进行建模预测,支撑上层能耗统计与监测应用、能耗综合评估应用,实现行车调度精细化,促进轨道交通绿色低碳发展。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。通过为企业搭建数字化转型的数字底座,星环科技助力政府、金融、能源、...
数据库作为提供数据存储与处理能力的基础软件,是信息系统的基础、信息安全的基石,因此,数据库自主可控和国产化替代已经刻不容缓。兼容性是国产化替代关键,自研数据库更具潜力Oracle数据库发展较早,在国内市场内占领了一定先机,企业经过信息化的长期积累和革新,基于Oracle开发了大量的系统业务。为了能够适配新的国产数据库产品,必须对应用代码进行大量修改,各数据表的数据类型、函数、语法规则需要进行系统、全面的改造,这就要求新的国产数据库对原有数据库能够有很好的兼容性支持,降低迁移的代码改造成本。Oracle经过多年的发展,在SQL语言、性能、实例形态、容灾方案等方面有很多积累扩展。若要实现Oracle数据库的国产化替代,除了要能够提供在性能、容灾能力、安全能力等方面全方位提供对等的能力,首先要解决的就是如何兼容Oracle的大量SQL方言,尤其是Oracle的PL/SQL这一独特的广受欢迎的语法体系。中国信通院《数据库发展研究报告》中表示,“国内关系型数据库产品中多数是基于MySQL和PostgreSQL二次开发的”。因此,这些产品对MySQL、PostgreSQL兼容性较好,但没有体系化的...
企业选择合适的图数据库需要考虑多方面的因素,包括以下几点:数据集规模:如果需要处理大规模的图形数据,应选择支持水平扩展和集群部署的图数据库。查询需求:不同的图数据库对数据类型和查询需求的支持程度有所不同,应根据实际需求选择。性能和可扩展性:不同的图数据库性能和可扩展性有所不同,应选择性能和可扩展性良好的图数据库。支持程度:选择使用支持程度好的图数据库,可以得到更好的技术支持。维护和成本:选择维护成本低、方便使用的图数据库,能够降低维护成本和使用难度。在选择图数据库时,应根据具体需求进行综合分析、评估和选择。星环科技分布式图数据库是国内比较知名的图数据库产品之一。星环分布式图数据库StellarDB星环科技在图计算领域深耕多年,自主研发了分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB在数据导入、多跳查询和图算法性能方面实现了数倍升级,同时在易用...
星环科技数据底座方案已在多个场景落地应用:广西某水电企业工业大数据生态云平台按照“统一规划、统一设计、统一建设”原则开展适应电力能源需求的“云-雾-端”多级、多云协同云计算架构设计。形成电力能源企业计算云、存储云、网络云、安全云等多云架构体系。打造包含智慧运营中心、设备状态诊断中心、安全应急中心、气象资源中心、智慧营销中心与智慧电厂的核心智慧化平台,实现数字化业务管控、智慧化企业经营和生态化商业服务的完整生态,实现企业的数字化转型。工业大数据生态云平台实施分为平台构建、数据资产治理实施与基础门户建设三个部分。其中IaaS层提供计算资源、存储资源、网络资源等基础设施服务;PaaS层由容器云、微服务治理、DevOps、敏捷开发平台、大数据平台、数据资产管理、统一应用门户等组成,为上层智慧企业应用提供基础能力平台的支撑,未来可进一步扩展人工智能平台、元宇宙、区块链、数字孪生等新技术应用平台;SaaS层应用提供数字化业务管理、智慧化企业运营管控、生态化商业服务等应用,并基于统一应用门户为用户提供交互服务。新能源集控中心是实时数仓在新能源方面的应用,跟水电比较像,比如区域监控中心一体化大数据应用...
行业资讯
边缘计算平台
在边缘计算领域,星环科技研发了边缘计算平台Sophon。Sophon是解决多模态数据集成和治理过程中的边缘化、智能化的云端-边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云-边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。Sophon在智能制造、智能安防、智能工地、智能交通、智能城市、智能校园、智能加油站等城市治理、设备可预测性维护等云边一体场景有着广泛的应用。当前边缘计算作为产业数字化转型核心技术已形成共识,我国也高度重视边缘计算的发展,积极推进边缘计算在工业互联网等多个领域的技术、标准与产业发展。星...
图数据库是一种用于处理图形数据的特殊类型的数据库。它们旨在存储和管理关系和连接,具有比其他类型的数据库更强大的能力。目前国内有众多优秀图数据库产品,星环科技图数据库产品StellarDB其中之一。TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。TranswarpStellarDB优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的...