ai大模型开发成本

行业资讯
大模型开发运维
大模型开发运维是一个涉及多方面技术与流程的复杂任务,以下是相关内容的介绍:大模型开发数据处理:运维工作会产生海量的异构数据,如服务器日志、性能指标、用户行为数据等。大模型开发需要对这些数据进行清洗定期对大模型进行数据更新和维护,以保持模型的准确性和有效性。成本控制:大模型的开发和运维需要大量的算力资源,需要合理规划和管理资源,优化资源利用率,降低运维成本。挑战与应对数据质量与完整性挑战:数据的评估,结合领域知识和人工经验进行验证和修正。技术整合与兼容性问题:大模型开发运维需要整合多种技术,如深度学习框架、数据处理工具、自动化运维工具等。需要解决这些技术之间的兼容性问题,确保整个系统能够协同工作。、预处理、标注等操作,以确保数据的质量和一致性,从而为模型训练提供可靠的数据基础。模型训练与优化:基于处理后的数据,使用深度学习框架对大模型进行训练。同时,需要不断调整模型的参数、架构等,以优化模型的性能和效果。模型部署:模型训练完成后,需将其部署到生产环境中。这涉及到模型的加载、存储、并行计算等实现方式,以及接口封装、业务系统集成等步骤。大模型运维监控与预警:实时监控大模型的运行状态,包括资源
ai大模型开发成本 更多内容

,PhoenixSQL等,SQL无统一规范,用户需要学习适配多个产品的不同接口,学习和开发成本高。缺少统一的访问接口,不同的大数据技术采用不同的API编程接口,开发不同的数据模型效率低。当有新业务需要新增模型时,需要引起计算资源竞争等问题。总体来说,CDH拼凑起来的散装架构复杂度高,客户新业务开发、业务需求变更开发成本很高,运维成本也很高,数据流转和融合分析等数据处理效率低。CDH散装架构跨模型分析方案下面我们来举个,TDH统一的多模型架构具有复杂度低、开发成本低、运维成本低、数据处理效率高等优点。统一的接口CDH不同组件使用不同SQL编译引擎,如HiveQL,SparkSQL,ImpalaSQL不同,用户需要学习适配多个产品的不同接口,开发成本高。同样的,这些产品也使用了各自独立的计算引擎和存储,数据存储在各自的生态中难以互通,若需要把数据从一个产品导入到另一个产品中,需要通过文本离线导入导出多种数据库的技术架构,提升开发多模型应用的效率,降低不同模型间的开发难度和运维成本,提升运行性能。统一的计算引擎可支持联邦计算,企业内部多种数据模型可与第三方数据库进行联合查询,消除数据孤岛。此外,还

行业资讯
多模型数据统一处理平台的设计与应用
企业数字化转型面临跨模型开发复杂、IT架构复杂(运维复杂;运维成本高;跨平台开发成本高;容易形成数据孤岛;数据流转复杂,一致性难以保障;数据存储冗余;计算/存储资源之间存在竞争)等困难,因此需要多,能够帮助用户简化系统架构、减少开发运维成本、提升用户体验和数据洞察力,满足更多复杂业务需求。ArgoDB可以替代Hadoop+MPP混合架构。支持标准SQL语法,提供多模分析、实时数据处理、存算模型支撑,引入多模型数据库。星环科技一直致力于国产化数据库的自主研发,打造了自主可控的高性能分布式数据库ArgoDB。作为一款领先的多模型数据库,ArgoDB支持关系型、搜索、文本、对象、图等10种数据模型数据单独部署和使用不同的数据库产品,基于星环科技ArgoDB的多模型统一技术架构,用户可以实现不同模型数据的统一存储管理,并且用户只需用一句SQL就能同时访问这3种存储模型进行联合分析,替代了之前3段代码,一次操作完成了之前三次操作才能完成的业务,大大简化了开发复杂度,简化用户操作。同时数据也仍保留在原存储引擎中,也不用对数据进行导入导出或者转换,不会存在数据不一致或数据冗余存储的问题。在

行业资讯
AI大模型应用开发
AI大模型应用开发是一个综合性的过程,涉及多个关键步骤和技术要点。1.明确应用场景和需求场景分析:深入研究目标行业和应用场景,例如医疗领域的辅助诊断、金融领域的风险评估、教育领域的个性化学习辅助等,如界面友好性、交互便捷性等。2.选择合适的大模型模型评估:根据应用需求,评估不同的AI大模型。考虑模型的性能指标,如在相关任务中的准确率、召回率等;模型的规模和复杂度是否适合部署环境;模型的预训练模型的性能。5.应用开发接口设计:设计应用程序接口(API),以便其他系统或软件能够方便地调用大模型的功能。API的设计应该遵循简单、稳定、安全的原则,并且要考虑到数据传输的效率和格式。前端开发:如果是面向用户的应用,需要开发用户界面(UI)。根据应用场景和用户体验需求,设计简洁、直观的界面,方便用户输入和获取信息。后端开发:搭建后端服务,处理业务逻辑和数据存储。后端需要与大模型进行交互,将用户输入的数据发送给大模型进行处理,并将大模型返回的结果进行解析和处理,然后返回给前端或其他系统。6.性能测试与优化性能测试:使用测试集对开发好的应用进行性能测试,评估模型的准确性、响应时间、吞吐量等

行业资讯
大模型开发应用
大模型开发应用是当前人工智能领域的热点,涵盖从基础开发到在多行业多场景应用的诸多方面,以下是相关介绍:大模型开发数据收集与预处理数据收集:从多种渠道收集海量数据,包括网页、社交媒体、学术文献、企业内部数据等。例如,开发一个通用的语言大模型,可能需要收集数十亿甚至数万亿字的文本数据。数据预处理:对收集到的数据进行清洗、去重、标注等处理,提高数据质量。如去除包含错误、重复或不相关信息的数据,对文的文本描述或条件生成逼真的图像,可用于艺术创作、游戏开发等。其他领域医疗领域:辅助医生进行疾病诊断、药物研发等。例如,大模型可以通过分析大量的医疗影像和病历数据,帮助医生更准确地诊断疾病,提高诊断效率本数据进行分词、词性标注等操作,为后续训练提供优质数据。大模型应用自然语言处理领域智能客服:大模型可理解用户咨询的自然语言问题,并生成准确、友好的回答,自动处理大量常见问题,提高客服效率和用户满意度。例如,阿里云的智能客服系统利用大模型技术,能够快速准确地处理海量客户咨询。机器翻译:将一种语言的文本准确地翻译成另一种语言,大模型在处理复杂句子结构和多语言翻译方面表现出色。如谷歌翻译利用大模型不断提升

行业资讯
大模型数据增强
在AI大模型的数据增强领域,研究者们已经开发出多种技术和方法来提高模型性能和泛化能力。数据增强与合成:数据增强是一种从数据到数据的生成方法,通过变换或扰动来增强现有数据样本的丰富性,而不显著改变其基本特征。数据合成则旨在从头开始或基于生成模型创建全新的数据,这些数据与真实数据的分布相似,随着生成AI技术的发展,合成数据的质量和生成效率都有了显著提升。数据增强技术分类:数据增强可以分为数据标注:检索增强生成(RAG)技术结合了传统信息检索系统的优势与生成式大语言模型的功能,通过从大量文档中检索出相关信息,然后基于这些信息进行回答或生成文本。数据增强在特定领域的应用:在数学、科学和编程等领域、数据重构和共同标注三个子类别,这些技术有助于通过变换现有数据来增加数据的多样性。数据合成可以分为通用模型蒸馏、领域模型蒸馏和模型自我改进三个子类别。数据增强的应用:在大型语言模型(LLMs)的数据准备阶段,数据合成和增强帮助生成多样化和高质量的数据集,以应对真实世界数据稀缺的挑战。在指令调优阶段,数据合成和增强帮助生成高质量的指令遵循数据,通过通用模型蒸馏、模型自我改进和数据增强等方法。RAG技术

行业资讯
大模型开发管理平台
解锁大模型开发管理平台:AI时代的“魔法工坊”大模型开发管理平台介绍概念:大模型开发管理平台是一种集成化的工具系统,旨在辅助开发者高效地进行大模型的开发、训练、优化、部署以及后续的管理维护工作。它,开发个性化推荐模型,为用户精准推荐产品和服务,如电商平台的商品推荐、内容平台的文章视频推荐等。内容创作辅助:辅助创作新闻稿、营销文案、视频脚本等内容。例如,输入创作主题和相关要求,平台基于大模型生成整合了算力资源、数据管理、模型训练框架、评估工具等一系列要素,为大模型从构思到实际应用提供全流程支持。功能特点多样化模型支持:集成业界主流开源大模型,开发者无需从头构建模型,可选择合适的预训练模型进行用于大语言模型的提示词;支持检索增强生成,智能体开发等,助力构建更智能的大模型应用。模型运维管理:对大模型进行全生命周期管理,包括模型版本控制、性能监测、故障诊断与修复等,确保模型在生产环境中的稳定运行和持续优化。优势降低技术门槛:即使是缺乏深厚机器学习专业知识的人员,也能借助平台低代码甚至无代码的操作,参与到大模型开发应用中,加速企业数字化转型和创新。提升开发效率:一站式的工具和功能,减少了在

星环科技正式推出新一代高性能大模型一体机TxData-LM(LLMopsforDeepSeek一体机版本),深度融合软硬件技术,为企业提供从模型开发到应用落地的全生命周期解决方案,助力AI技术快速需求,大模型一体机还提供了国产卡的适配机型,打造纯国产AI一体机,用户可以根据自己的需求(基于业务场景来选择合适参数量的模型)和预算,选择适合的硬件配置。TxData-LM将帮助企业突破算力与成本瓶颈融入生产与业务场景。核心亮点:全栈优化释放高性能TxData-LM以“满血版”DeepSeek671B大模型为核心,依托星环自研的SophonLLMops平台,打通语料开发、模型训练、知识融合、应用部署等全链路流程,支持企业高效构建智能体与应用。开箱即用解锁多领域AI潜能DeepSeek671B大模型在TxData-LM的驱动下,可灵活应用于:自然语言处理:机器翻译、情感分析、智能问答;数据分析与,实现大模型“开箱即用”,加速AI在各行业落地。星环科技已经与多家公司、单位及机构合作,完成了金融、制造、能源、政府等行业大模型及AI智能体的研发工作,并将其融入到实际产品和服务中。

行业资讯
本地部署AI大模型
本地部署AI大模型,是指将AI模型存储和运行在用户自己的设备或服务器上,而非依赖云端服务。这种部署方式日益受到重视,因为在安全性、隐私、成本控制以及性能方面提供了显著优势。系统架构设计本地部署的系统诊断:辅助医生分析影像资料并提供初步诊断建议。教育领域:个性化学习路径推荐和智能辅导系统。金融风控:实时分析交易行为以识别潜在欺诈风险。本地部署AI大模型能够为组织提供更高的灵活性、更低延迟以及更好的架构通常包括以下几个关键组件:硬件资源:高性能的CPU、GPU或专门的AI加速器用于处理计算密集型任务。软件框架:选择合适的深度学习框架来构建和训练模型。数据管理:建立高效的数据存储和访问机制,确保数据保护。随着硬件的进步和压缩技术的发展,更多复杂的模型可以在边缘设备上运行。尽管初始投资可能较高,但长期来看,在特定场景下实现本地化部署可以带来显著的成本节省和效率提升。格式。标注与增强:对需要标注的数据进行人工或自动标注,并使用增强技术扩大样本多样性。模型训练与优化模型选择与构建:根据应用场景选择合适的预训练模型或从头开始构建新模型。微调与迁移学习:利用现有预训练

行业资讯
AI大模型
AI大模型,又称为大规模AI模型、大型神经网络模型,是指参数数量庞大的人工智能模型,通常由数以亿计的参数组成。这些模型通常由深度学习算法训练而成,具有相对较高的准确性和复杂性。随着硬件计算能力的不断提升,以及训练数据集的不断扩大,AI大模型的应用和研究越来越受到关注。AI大模型具有以下几个特点:高度复杂性:AI大模型拥有大量的参数,可以对更加复杂的问题建模和学习。相比于传统的机器学习算法,大模型用户数据。这对于数据隐私和安全提出了挑战,需要合理的数据使用和保护措施。AI大模型在许多领域都有着广泛的应用。例如,在自然语言处理领域,大模型能够实现更加准确和流畅的文本生成、机器翻译和问答系统;在计算机视觉领域,大模型能够实现更准确的图像分类、目标检测和图像生成;在推荐系统领域,大模型能够更好地理解用户兴趣和需求,提供个性化的推荐服务。大模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发大模型。星环科技作为国内领先的大数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的大模型
猜你喜欢

行业资讯
常见的图数据库应用场景有哪些?
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...

行业资讯
国产化替代升级实践
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...

行业资讯
分布式隐私计算平台
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...

行业资讯
数据要素安全流通服务
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...

行业资讯
什么是时空数据库?
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
银行图数据库应用场景有哪些?
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...

星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...

行业资讯
金融、医疗知识图谱平台
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...

行业资讯
图数据库有哪些特点?
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...

行业资讯
基于数据安全网关的跨境安全流通方案
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...