gpt大模型案例

行业资讯
gpt语料管理
GPT语料管理GPT是一种基于Transformer架构的自然语言处理模型,它的核心能力在于通过大规模语料库的预训练,学习语言的结构和规律,从而能够生成自然流畅的文本。GPT模型的训练过程离不开海量的语料,这些语料的收集、处理和管理是模型性能的关键因素之一。语料的来源GPT的语料主要来源于可以公开访问的互联网数据,如新闻报道、社交媒体、论坛等。此外,还包括内部人工收集的数据,例如采访调研、搜索的存储和管理。通常会使用数据库等工具来存储语料,以便于后续的检索和使用。语料管理的重要性语料的质量直接影响到GPT模型的性能。高质量的语料能够帮助模型更好地学习语言的规律,从而生成更准确、更自然的文本。此外,语料管理还可以提高模型的可解释性。由于GPT模型的复杂性,语料的规模和质量对模型的可解释性有重要影响。通过有效的语料管理,可以在一定程度上缓解模型的“算法黑箱”问题。未来的发展趋势随着GPT可以用于自动化的语料清洗和标注,从而提高语料管理的效率。总之,GPT语料管理是自然语言处理领域的重要环节。通过有效的语料管理,可以提高模型的性能和可解释性。未来,随着技术的不断发展,语料管理将在自然语言处理领域发挥更加重要的作用。
gpt大模型案例 更多内容

行业资讯
低代码+大模型,软件开发王炸!
曲线》中低代码(Low-code)也正处于峰值。当“聪明”的GPT遇上“平民化”的低代码,两大热门技术的融合能否在真正意义上变革传统开发?大模型能通过自然语言理解自动生成需求文档及代码供给低代码开发者要的是,通过大模型对于文档、模版、业务流程、样例、源码的自学习能力,融合低代码的设计编排和逻辑优化能力,使得低代码定位形态升级、开发边界扩大,价值范围打开,可以预见,融合大模型能力的低代码开发平台有望成为GPT2B应用落地的加速器。因此,我们需要重新定义低代码开发平台。GPT的横空出世,全球软件厂商掀起一股智能化开发热潮。据Gartner新发布的《2023年新兴技术成熟度曲线》显示,生成式AI正位于顶峰,同样在Gartner发布的《2023年中国ICT技术成熟度

近日,在2024世界人工智能大会“迈向AGI:大模型焕新与产业赋能”论坛上,《2024大模型典型示范应用案例集》(以下简称《案例集》)重磅发布!星环科技无涯·问知InfinityIntelligence成功入选《案例集》。2024年,我国将人工智能的发展上升为国家战略,大模型的产业化应用落地进一步提速。作为以产业化为导向的重磅前沿研究成果,《案例集》展示了新全的大模型创新融合应用发展成果,推动了大模型为代表的人工智能前沿技术赋能千行百业,推动社会经济高质量发展。无涯·问知是一款基于星环科技自研预训练模型无涯Infinity和向量数据库Hippo、图数据库StellarDB构建的企业级垂直领域理解能力及数据分析能力,可用于市场研究分析、企业供应链分析、法律风险预警、设备故障诊断等丰富的业务场景中。主要产品优势体现在:精准问答能力,减少大模型幻觉基于向量索引技术的信息检索:基于星环自研向量多层次关系,从而进行深度的关联分析,提供了更为深入和准确的洞察结论。确保答案可验证性:无涯·问知的所有回答均提供标注信息来源,确保答案的透明度和可验证性,有效避免大模型幻觉。多模数据来源,提升回答丰富

行业资讯
大模型架构
大模型在不同场景下的需求。模型层:这一层主要由大语言模型、视觉-语言模型等构成。大语言模型如GPT-4等,具备处理及生成自然语言文本的能力;视觉-语言模型则结合了视觉与语言信息,能够理解和创造跨模态大模型通常指规模巨大、参数数量众多的机器学习模型,尤其在深度学习领域,这种模型有着复杂且多层次的架构。技术架构层次大模型的技术架构可以划分为多个层次,每个层次都承担着不同的功能和任务,共同构成了大模型的完整体系:基础设施层:这是大模型技术架构的基石,包括GPU、CPU、RAM、HDD和网络等关键硬件设施。其中,GPU针对并行计算进行了优化,非常适合深度学习以及执行复杂计算任务;CPU则承担了大部分的计算任务,特别是在执行逻辑运算和控制任务时表现高效;RAM提供了计算过程中快速读写数据的临时存储空间;HDD承担着存储大量训练数据和模型文件的任务;网络则为AI大模型的预训练、微调、推理、应用访问提供分布式的通信基础设施。云原生层:基于Docker容器和K8S的弹性云原生架构,为AI大模型的预训练、微调、推理以及应用的部署提供了高扩展、高可用的云环境。这种架构能够根据访问量的情况动态伸缩,满足

行业资讯
法律大模型
法律大模型是专门针对法律行业设计的大型预训练人工智能模型,这类模型基于海量的法律文本数据进行训练,包括法律法规、司法案例、专业文献等,旨在理解和处理复杂的法律问题。它们通过微调以提高在处理法律问答、文本生成、案例分析等任务时的专业性和准确性。大模型的应用有助于加速司法决策过程,提高判决的一致性和公正性,并为非专业人士提供易于理解的法律信息。在实际操作中,法律大模型可以辅助进行法规查询、案例分析、合同审查等工作,从而减轻专业人员的工作负担,并促进法治社会的发展。星环科技无涯·问知(InfinityIntelligence),是一款基于星环大模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。

行业资讯
法律大模型,法律大模型有哪些应用场景?


行业资讯
向量数据库扩展大模型的时间和空间维度
发生的资讯、实时新闻等快速变化的信息。这就导致大模型无法及时处理新信息,影响回答的准确性。其次,大模型的输入字数限制取决于其算力和工程难度。像GPT-3就只能容纳2048个Token,约1024个汉字;GPT-4只能容纳32000个Token,约16000个汉字。对于超长文本输入,比如企业年报分析,大模型则难以胜任。再次,为了提高大模型在特定领域的准确性,需要在大模型中嵌入领域知识库,使其具备专业基于目前的技术发展现状,通用大模型和领域大模型都存在一些限制。其中,语料时间限制、输入字数限制和领域知识限制是主要问题。首先,语料时间限制方面,大模型的训练时间需要半年至一年,训练过程不能包含后续领域的语义理解和判断能力。然而,由于领域知识的复杂性和变化性,大模型无法完全做到准确性。面对这些限制,我们可以考虑引入向量数据库,它是专门为存储向量数据而设计的数据库。向量是由一组有序的数值(通常是文本的特征向量数据,帮助大模型实现长期记忆和专业能力扩展。当用户向大模型提问时,用户问题会被转化为一组高维向量,进行语义搜索,找到相关信息,并拼接成提示词,发给大语言模型生成答案反馈用户。向量数据库在其

大型语言模型所面临的一个重要问题是如何保证对的回答准确可靠,解决产生不准确或不相关信息、缺乏事实一致性或常识、重复或自相矛盾、带有偏见或冒犯性等问题。为了解决这些挑战,语言模型常常使用向量数据库来存储与其所需领域或行业相关的各种主题、关键字、事实观点以及来源的信息。然后,您可以使用大型语言模型和AI插件来访问向量数据库中存储的信息,以生成更加准确、有用且具有吸引力的内容,符合您的意图和风格。例如,如果您想撰写一篇关于人工智能新趋势的博客文章,您可以使用向量数据库来存储与该主题相关的新信息,并将这些信息与问题一起提供给大型语言模型,以生成一篇利用新信息的博客文章。目前,大型语言模型面临的另一个挑战是令牌限制。GPT-3发布时,提示和输出的总令牌数被限制为2048个。在GPT-3.5中,这一限制增加到4096个令牌。现在,GPT-4有两个变体,一个限制为8192个令牌,另一个限制为32768个令牌,大约相当于50页的文本量。像ChatGPT这样的大型语言模型擅长处理输入并生成新的有用输出。然而,问题在于这些模型的背景信息是有限的,一次只能处理数千个字。因此,您必须通过对模型进行微调的方式

行业资讯
什么是大模型提示词?
大模型提示词(Prompts)是指在输入大模型时,用来引导模型生成特定类型输出的文本。这些提示词可以是问题、指令或任何形式的文本,帮助模型理解用户的意图并生成相应的回答或内容。提示词是用户向大模型信息。大模型提示词作用精准引导输出:帮助模型明确用户期望的任务类型和目标。设定输出风格与格式:可以指定模型生成内容的风格、语气、格式等。控制输出长度与细节:用户可以通过提示词要求模型控制生成内容的长度和详细程度。大模型提示词设计原则清晰明确:提示词应简洁明了,避免模糊、歧义或过于复杂的表述,确保模型能够准确理解用户意图。具体详细:提供足够的细节信息有助于模型生成更贴合需求的内容任务导向:明确指出期望模型完成的任务。避免引导偏见:在设计提示词时,应尽量保持客观中立,避免使用带有强烈主观色彩或偏见性的词语,以免影响模型输出的公正性和客观性。大模型提示词优化与迭代根据模型反馈调整:观察模型对初始提示词的输出结果,如果不符合预期,分析原因并对提示词进行调整。多轮交互优化:通过与模型进行多轮对话,逐步细化和完善提示词。学习他人经验与案例:参考其他用户在相同或类似任务中使用的成功提示词案例,学习其中的设计思路和技巧,并结合自身需求进行创新和改进。
猜你喜欢

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...