gpt大模型搭建

星环无涯·问知
星环科技无涯·问知Infinity Intelligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。

gpt大模型搭建 更多内容

行业资讯
gpt语料管理
GPT语料管理GPT是一种基于Transformer架构的自然语言处理模型,它的核心能力在于通过大规模语料库的预训练,学习语言的结构和规律,从而能够生成自然流畅的文本。GPT模型的训练过程离不开海量的语料,这些语料的收集、处理和管理是模型性能的关键因素之一。语料的来源GPT的语料主要来源于可以公开访问的互联网数据,如新闻报道、社交媒体、论坛等。此外,还包括内部人工收集的数据,例如采访调研、搜索的存储和管理。通常会使用数据库等工具来存储语料,以便于后续的检索和使用。语料管理的重要性语料的质量直接影响到GPT模型的性能。高质量的语料能够帮助模型更好地学习语言的规律,从而生成更准确、更自然的文本。此外,语料管理还可以提高模型的可解释性。由于GPT模型的复杂性,语料的规模和质量对模型的可解释性有重要影响。通过有效的语料管理,可以在一定程度上缓解模型的“算法黑箱”问题。未来的发展趋势随着GPT可以用于自动化的语料清洗和标注,从而提高语料管理的效率。总之,GPT语料管理是自然语言处理领域的重要环节。通过有效的语料管理,可以提高模型的性能和可解释性。未来,随着技术的不断发展,语料管理将在自然语言处理领域发挥更加重要的作用。
行业资讯
gpt语料管理
GPT语料管理GPT是一种基于Transformer架构的自然语言处理模型,它的核心能力在于通过大规模语料库的预训练,学习语言的结构和规律,从而能够生成自然流畅的文本。GPT模型的训练过程离不开海量的语料,这些语料的收集、处理和管理是模型性能的关键因素之一。语料的来源GPT的语料主要来源于可以公开访问的互联网数据,如新闻报道、社交媒体、论坛等。此外,还包括内部人工收集的数据,例如采访调研、搜索的存储和管理。通常会使用数据库等工具来存储语料,以便于后续的检索和使用。语料管理的重要性语料的质量直接影响到GPT模型的性能。高质量的语料能够帮助模型更好地学习语言的规律,从而生成更准确、更自然的文本。此外,语料管理还可以提高模型的可解释性。由于GPT模型的复杂性,语料的规模和质量对模型的可解释性有重要影响。通过有效的语料管理,可以在一定程度上缓解模型的“算法黑箱”问题。未来的发展趋势随着GPT可以用于自动化的语料清洗和标注,从而提高语料管理的效率。总之,GPT语料管理是自然语言处理领域的重要环节。通过有效的语料管理,可以提高模型的性能和可解释性。未来,随着技术的不断发展,语料管理将在自然语言处理领域发挥更加重要的作用。
行业资讯
gpt语料管理
GPT语料管理GPT是一种基于Transformer架构的自然语言处理模型,它的核心能力在于通过大规模语料库的预训练,学习语言的结构和规律,从而能够生成自然流畅的文本。GPT模型的训练过程离不开海量的语料,这些语料的收集、处理和管理是模型性能的关键因素之一。语料的来源GPT的语料主要来源于可以公开访问的互联网数据,如新闻报道、社交媒体、论坛等。此外,还包括内部人工收集的数据,例如采访调研、搜索的存储和管理。通常会使用数据库等工具来存储语料,以便于后续的检索和使用。语料管理的重要性语料的质量直接影响到GPT模型的性能。高质量的语料能够帮助模型更好地学习语言的规律,从而生成更准确、更自然的文本。此外,语料管理还可以提高模型的可解释性。由于GPT模型的复杂性,语料的规模和质量对模型的可解释性有重要影响。通过有效的语料管理,可以在一定程度上缓解模型的“算法黑箱”问题。未来的发展趋势随着GPT可以用于自动化的语料清洗和标注,从而提高语料管理的效率。总之,GPT语料管理是自然语言处理领域的重要环节。通过有效的语料管理,可以提高模型的性能和可解释性。未来,随着技术的不断发展,语料管理将在自然语言处理领域发挥更加重要的作用。
曲线》中低代码(Low-code)也正处于峰值。当“聪明”的GPT遇上“平民化”的低代码,两热门技术的融合能否在真正意义上变革传统开发?模型能通过自然语言理解自动生成需求文档及代码供给低代码开发者要的是,通过大模型对于文档、模版、业务流程、样例、源码的自学习能力,融合低代码的设计编排和逻辑优化能力,使得低代码定位形态升级、开发边界扩大,价值范围打开,可以预见,融合模型能力的低代码开发平台有望成为GPT2B应用落地的加速器。因此,我们需要重新定义低代码开发平台。GPT的横空出世,全球软件厂商掀起一股智能化开发热潮。据Gartner新发布的《2023年新兴技术成熟度曲线》显示,生成式AI正位于顶峰,同样在Gartner发布的《2023年中国ICT技术成熟度
行业资讯
搭建模型
搭建一个模型(LargeLanguageModel,LLM)是一个复杂的过程,涉及到硬件选择、框架搭建、数据准备、模型训练、评估和部署等多个步骤。以下是搭建模型的一般流程:需求分析:确定模型的目标任务和应用场景,分析所需的性能指标和资源需求。硬件选择:选择合适的硬件平台,以提供足够的计算能力。考虑分布式训练的可能性以扩展计算资源。框架搭建:选择一个适合模型训练的深度学习框架,以及分布式训练框架等。数据准备:收集和处理大量的训练数据。这可能包括数据清洗、预处理、分词、构建词汇表等步骤。模型设计:设计模型架构,选择合适的模型类型,并确定模型的规模,包括层数和隐藏单元数。预训练:使用大量无标签数据进行预训练,以学习语言的通用表示。常见的预训练任务包括语言模型预训练、掩码语言模型(MLM)和下一句预测(NSP)。微调:在特定任务的数据集上对预训练模型进行微调,以适应特定的应用场景。模型评估:使用验证集评估模型的性能,调整超参数以优化模型模型优化:应用模型压缩和加速技术,如量化、剪枝、知识蒸馏等,以提高模型的推理效率。部署:将训练好的模型部署到生产环境中,可能涉及到模型转换、服务封装等步骤。监控与维护:在模型部署后,持续监控模型性能,定期更新模型以适应新的数据和场景。
曲线》中低代码(Low-code)也正处于峰值。当“聪明”的GPT遇上“平民化”的低代码,两热门技术的融合能否在真正意义上变革传统开发?模型能通过自然语言理解自动生成需求文档及代码供给低代码开发者要的是,通过大模型对于文档、模版、业务流程、样例、源码的自学习能力,融合低代码的设计编排和逻辑优化能力,使得低代码定位形态升级、开发边界扩大,价值范围打开,可以预见,融合模型能力的低代码开发平台有望成为GPT2B应用落地的加速器。因此,我们需要重新定义低代码开发平台。GPT的横空出世,全球软件厂商掀起一股智能化开发热潮。据Gartner新发布的《2023年新兴技术成熟度曲线》显示,生成式AI正位于顶峰,同样在Gartner发布的《2023年中国ICT技术成熟度
行业资讯
搭建模型
搭建一个模型(LargeLanguageModel,LLM)是一个复杂的过程,涉及到硬件选择、框架搭建、数据准备、模型训练、评估和部署等多个步骤。以下是搭建模型的一般流程:需求分析:确定模型的目标任务和应用场景,分析所需的性能指标和资源需求。硬件选择:选择合适的硬件平台,以提供足够的计算能力。考虑分布式训练的可能性以扩展计算资源。框架搭建:选择一个适合模型训练的深度学习框架,以及分布式训练框架等。数据准备:收集和处理大量的训练数据。这可能包括数据清洗、预处理、分词、构建词汇表等步骤。模型设计:设计模型架构,选择合适的模型类型,并确定模型的规模,包括层数和隐藏单元数。预训练:使用大量无标签数据进行预训练,以学习语言的通用表示。常见的预训练任务包括语言模型预训练、掩码语言模型(MLM)和下一句预测(NSP)。微调:在特定任务的数据集上对预训练模型进行微调,以适应特定的应用场景。模型评估:使用验证集评估模型的性能,调整超参数以优化模型模型优化:应用模型压缩和加速技术,如量化、剪枝、知识蒸馏等,以提高模型的推理效率。部署:将训练好的模型部署到生产环境中,可能涉及到模型转换、服务封装等步骤。监控与维护:在模型部署后,持续监控模型性能,定期更新模型以适应新的数据和场景。
行业资讯
搭建模型
搭建一个模型(LargeLanguageModel,LLM)是一个复杂的过程,涉及到硬件选择、框架搭建、数据准备、模型训练、评估和部署等多个步骤。以下是搭建模型的一般流程:需求分析:确定模型的目标任务和应用场景,分析所需的性能指标和资源需求。硬件选择:选择合适的硬件平台,以提供足够的计算能力。考虑分布式训练的可能性以扩展计算资源。框架搭建:选择一个适合模型训练的深度学习框架,以及分布式训练框架等。数据准备:收集和处理大量的训练数据。这可能包括数据清洗、预处理、分词、构建词汇表等步骤。模型设计:设计模型架构,选择合适的模型类型,并确定模型的规模,包括层数和隐藏单元数。预训练:使用大量无标签数据进行预训练,以学习语言的通用表示。常见的预训练任务包括语言模型预训练、掩码语言模型(MLM)和下一句预测(NSP)。微调:在特定任务的数据集上对预训练模型进行微调,以适应特定的应用场景。模型评估:使用验证集评估模型的性能,调整超参数以优化模型模型优化:应用模型压缩和加速技术,如量化、剪枝、知识蒸馏等,以提高模型的推理效率。部署:将训练好的模型部署到生产环境中,可能涉及到模型转换、服务封装等步骤。监控与维护:在模型部署后,持续监控模型性能,定期更新模型以适应新的数据和场景。
行业资讯
搭建模型
搭建一个模型(LargeLanguageModel,LLM)是一个复杂的过程,涉及到硬件选择、框架搭建、数据准备、模型训练、评估和部署等多个步骤。以下是搭建模型的一般流程:需求分析:确定模型的目标任务和应用场景,分析所需的性能指标和资源需求。硬件选择:选择合适的硬件平台,以提供足够的计算能力。考虑分布式训练的可能性以扩展计算资源。框架搭建:选择一个适合模型训练的深度学习框架,以及分布式训练框架等。数据准备:收集和处理大量的训练数据。这可能包括数据清洗、预处理、分词、构建词汇表等步骤。模型设计:设计模型架构,选择合适的模型类型,并确定模型的规模,包括层数和隐藏单元数。预训练:使用大量无标签数据进行预训练,以学习语言的通用表示。常见的预训练任务包括语言模型预训练、掩码语言模型(MLM)和下一句预测(NSP)。微调:在特定任务的数据集上对预训练模型进行微调,以适应特定的应用场景。模型评估:使用验证集评估模型的性能,调整超参数以优化模型模型优化:应用模型压缩和加速技术,如量化、剪枝、知识蒸馏等,以提高模型的推理效率。部署:将训练好的模型部署到生产环境中,可能涉及到模型转换、服务封装等步骤。监控与维护:在模型部署后,持续监控模型性能,定期更新模型以适应新的数据和场景。
通过Manager管理平台,可一键部署Hyperbase。可以在第一次安装TranswarpDataHub集群时安装,也可以向安装好的集群另外安装Hyperbase服务。详细安装步骤及配置项,请参考《TDH安装手册》。安装Hyperbase可以分为以下步骤:软硬件环境检查:检查服务器配置、操作系统、浏览器是否满足要求。安装前配置:配置系统运行过程中所需的文件目录,确保系统运行正常。确认网络配置、Java环境、NTP服务器配置、安全配置、节点访问配置。安装Manager:安装Manager并实现集群管理。安装Hyperbase:您可以通过Manager管理平台安装Hyperbase,并在安装过程中选择所需的HDFS、YARN和Zookeeper等依赖服务以完成部署。产品包上传:在【应用市场】>【产品包】页面上传Hyperbase及相关服务的产品包。服务添加:通过【集群管理】>【添加服务】添加TranswarpHyperbase服务及TranswarpBasic组件(包括HDFS、YARN、Zookeeper、KunDB等)。配置安全:选择安全认证方式,可选简单认证或Kerbe...
JSON配置操作简介表数据VS表的扩展数据索引是Hyperbase的核心功能之一,我们在使用Hyperbase时,常常会为表建各类索引,包括全局索引、局部索引和LOB索引,利用索引中的数据提高查询效率。索引中的数据不属于表数据,但是从表数据而来,和表密不可分,所以我们将表数据和它所有索引中的数据合称为表的扩展数据,也就是说,我们做如下定义:表的扩展数据=表数据+全局索引数据+局部索引数据+LOB索引数据表的元数据VS表的扩展元数据Hyperbase表的元数据包括表名、列族名、DATA_BLOCK_ENCODING、TTL、BLOCKSIZE等等。一张Hyperbase表的各个索引也有自己的元数据,和索引数据一样,索引的元数据和表的关系也十分紧密,所以我们将表的元数据和它所有索引的元数据合称为表的扩展元数据:表的扩展元数据=表的元数据+全局索引元数据+局部索引元数据+LOB索引元数据我们有时也会将表的元数据称为基础元数据或者Base元数据。JSON配置的命令行指令为操作表的扩展数据和扩展元数据服务,Hyperbase提供了扩展的命令行指令:describeInJson、alterUseJ...
表10.Hyperbase在Zookeeper上的znode节点及作用说明节点分类作用/hyperbase1(zookeeper.znode.parent)Operation节点根节点,包含所有被Hyperbase创建或使用的节点/hyperbase1/hbaseid(zookeeper.znode.clusterId)Operation节点HBaseMaster用UUID标示一个集群。这个clusterId也保存在HDFS上:hdfs:/<namenode>:<port>/hyperbase1/hbase./hyperbase1/rs(zookeeper.znode.rs)Operation节点RegionServer在启动的时候,会创建一个子节点(例如:/hbase/rs/m1.host),以标示RegionServer的在线状态。HbaseMaster监控这个节点,以获取所有OnlineRegionServer,用于Assignment/Balancing。/hyperbase1/master(zookeeper.znode.master)Operatio...
hbaseSQL的IndexDDL支持创建和删除表的全局索引,包括:创建全局索引:CREATEGLOBALINDEX删除全局索引:DROPGLOBALINDEX但是,目前Hyperbase不支持使用SQL生成索引,您可以从HyperbaseShell中执行rebuild指令来生成索引,具体请参考《Hyperbase使用手册》。(创建索引前插入的数据没有索引,但是创建索引之后的数据有索引。)下面将具体介绍创建和删除索引的语法。创建全局索引:CREATEGLOBALINDEX语法:为Hyperbase表建全局索引CREATEGLOBALINDEX<index_name>ON<tableName>(<column1><SEGMENTLENGTHlength1>|<<(length1)>①[,<column2><SEGMENTLENGTHlength2>|<(length2)>,...]②);①column1:指根据哪个列建全局索引,可以有多个列,但不可包含首列(因该列映射为RowKey)。②...
2.1关于社区版您可能想要知道的2.2怎么联系到我们?遇到问题怎么办2.3产品资源汇总
为了方便您接下来的安装使用,社区版团队为您准备了视频教程,可以搭配手册内容一起查看:https://transwarp-ce-1253207870.cos.ap-shanghai.myqcloud.com/TDH-CE-2024-5/%E8%A7%86%E9%A2%91/%E5%BC%80%E5%8F%91%E7%89%88StellarDB%E5%AE%89%E8%A3%85%E8%A7%86%E9%A2%912024.5.mp4安装教程在安装启动StellarDB社区开发版容器之前,请务必执行dockerps确保环境当前无其他正在运行的开发版容器,如果有,请及时停止以防止后续端口冲突。请务必确保您的安装环境已经配置好了hostname以及/etc/hosts文件,否则hostname和IP地址将无法映射,最终导致安装失败。具体配置方式详见安装前系统配置改动安装流程步骤一将从官网下载下来的产品包上传至安装环境产品包名称:TDH-Stellardb-Standalone-Community-Transwarp-2024.5-X86_64-final.tar.gz步骤二执行下述命令进行解...
HyperbaseWeb管理页面主要用于Hyperbase服务的各种数据和信息的查看,下面我们将介绍管理页面的一些简单操作。HMaster管理页面打开HyperbaseActiveMaster管理页面的方法有两种:根据集群的ActiveMaster的IP地址打开:http://master_node_ip:60010。如下图:图25.ActiveMasterWeb页面通过TDH管理页面中Hyperbase服务的HMaster的ServiceLink打开,详细流程如下:TranswarpDataHubWEB管理页面也要根据集群的ActiveMaster的IP地址打开,地址一般是http://master_node_ip:8180。打开对应的Hyperbase服务的Roles页面。如下图:图26.Hyperbase角色页面左上角服务名后的圆点颜色表示集群中的Hyperbase服务的状态,比如当前是绿色的Green(HEALTHY),健康状态。另两种状态是Yellow(WARNING)和Red(DOWN)。通过每个HMaster对应的ServiceLink可以打开HMaster管理页面。如下...
表9.Hyperbase在HDFS中的目录结构简介目录作用有无清理机制or如何清理/hyperbase1根目录/hyperbase1/.tmp临时目录,用于存储临时文件和写入过程中的临时数据。这些临时文件可能包括数据块的临时副本、临时索引文件或其他中间结果文件。写入过程中的临时数据:在hyperbase1中,数据的写入是通过WAL(Write-AheadLog)进行的,WAL用于记录数据变更操作。在写入过程中,hyperbase1会将数据写入到WAL中,同时也会将数据写入到对应的数据文件中。/hyperbase1/.tmp目录用于存储在写入过程中尚未完全写入数据文件的临时数据。这样做是为了确保数据写入的原子性和可靠性。hyperbase1会定期清理/hyperbase1/.tmp目录中的过期临时文件和数据,以避免该目录占用过多的磁盘空间。清理策略可以通过hyperbase1的配置进行调整和设置。/hyperbase1/archive归档目录,用于存储已归档的hyperbase1数据。表数据经过一段时间的存储后,可能会变得不再频繁访问或需要长期保存。为了节省存储空间和提高性能,hyper...
产品文档
1 产品介绍
QuarkGateway是连接客户端与QuarkServer服务器的一个中间件,是客户请求QuarkServer服务的总入口,它严格按照用户预定义的配置文件,根据用户的不同需求来提供负载均衡、SQL规则路由、高可用(包括超时转发和宕机转发)、Web运维、Inceptor安全(LDAP,KERBEROS)等各项功能。QuarkGateway可以在多个QuarkServer间平衡业务流量,能够有效地为客户端屏蔽掉集群细节,能将不同的SQL类型路由到不同的QuarkServer,并且解决了QuarkServer超时或宕机后无法执行任务的问题,提高了产品的可用性。QuarkGateway的主要功能包括:负载均衡在这种情景下QuarkGateway可以将特定的业务分担给多个QuarkServer,从而实现多个InceptorServer平衡业务流量的功能,完成此项功能的前提是QuarkServer的TAG属性一致。SQL规则路由QuarkGateway基于特定规则,可将不同类型的SQL路由到不同的QuarkServer。高可用性包括超时转发和宕机转发等,QuarkGateway可将超时或者宕机的...
产品文档
客户服务
技术支持感谢你使用星环信息科技(上海)股份有限公司的产品和服务。如您在产品使用或服务中有任何技术问题,可以通过以下途径找到我们的技术人员给予解答。email:support@transwarp.io技术支持热线电话:4007-676-098官方网址:http://www.transwarp.cn/论坛支持:http://support.transwarp.cn/意见反馈如果你在系统安装,配置和使用中发现任何产品问题,可以通过以下方式反馈:email:support@transwarp.io感谢你的支持和反馈,我们一直在努力!