大模型赋能法律行业
大模型赋能法律行业 更多内容

行业资讯
法律大模型
法律大模型是专门针对法律行业设计的大型预训练人工智能模型,这类模型基于海量的法律文本数据进行训练,包括法律法规、司法案例、专业文献等,旨在理解和处理复杂的法律问题。它们通过微调以提高在处理法律问答、文本生成、案例分析等任务时的专业性和准确性。大模型的应用有助于加速司法决策过程,提高判决的一致性和公正性,并为非专业人士提供易于理解的法律信息。在实际操作中,法律大模型可以辅助进行法规查询、案例分析、合同审查等工作,从而减轻专业人员的工作负担,并促进法治社会的发展。星环科技无涯·问知(InfinityIntelligence),是一款基于星环大模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。

行业资讯
法律大模型,法律大模型有哪些应用场景?

行业资讯
法律大模型一体机
法律大模型一体机:当人工智能遇上法律专业法律大模型一体机是一种集成了人工智能大模型技术的专业法律设备。它不同于普通的法律数据库或检索系统,而是通过深度学习技术,吸收了海量法律条文、司法解释、裁判文书、学术论文等专业资料,形成了能够理解、分析和生成法律内容的"数字法律专家"。这种设备通常以硬件形式呈现,既保障了数据安全,又提供了强大的计算能力。在法律文书处理方面,法律大模型一体机展现出惊人的能力需要专业人士构建精确的检索式,而法律大模型一体机支持自然语言查询,能够理解"这种情况下法院通常会怎么判"这样的模糊问题,并从数百万判例中找出最相关的参考案例。更令人惊叹的是,它能够分析不同法院的裁判倾向,预测案件可能的走向,为诉讼策略提供数据支持。在法律咨询与普法领域,法律大模型一体机同样大显身手。它能够以通俗易懂的语言解释法律概念,回答"邻居装修影响到我该怎么办"等日常法律问题。边远地区的基层。它可以在几分钟内完成合同审查,准确识别潜在风险条款;能够自动生成起诉状、答辩状等法律文书初稿;还可以对复杂的证据材料进行智能分析,提取关键信息。法律检索与研究也因这项技术发生了质的变化。传统的法律检索

行业资讯
大模型赋能数据治理领域
大模型在数据治理领域的赋能主要体现在以下几个方面:自动化数据标准管理:大模型可基于企业现有标准、改进需求和外部标准,自动制定适合企业的数据标准。例如,某企业有海量数据需标准化,人工制定标准耗时费力且易出错,大模型能快速分析数据特征,生成符合业务需求的标准,经专家审定后发布使用。元数据管理:在元数据采集时,大模型能基于基础技术元数据和业务样例数据,自动填充其他核心元数据信息,如表的中文名、业务口径数据质量规则。通过分析数据血缘链路和质量校验结果,自动定位数据质量异常的源头,并基于正常业务样例数据自动修复数据中的异常。数据安全管理:基于数据对象的元数据、业务样例数据和企业的数据分级策略,大模型能数据治理的知识,成为数据治理的“行业专家”。企业可将已有的数据治理经验和专业知识输入大模型,使其掌握数据建模、数据清洗、数据安全等方面的技能。当企业面临新的数据治理问题时,大模型能够提供专业的建议的便捷度和友好度。用户可以通过自然语言与大模型进行交互,表达数据治理的需求和问题,大模型能够理解并给出相应的反馈和解决方案。这种交互式操作模式使得非专业人员也能轻松参与到数据治理工作中,提升了数据治理

行业资讯
大数据赋能
大数据赋能是指通过对海量、多源、异构数据的收集、存储、分析和挖掘,为各行业、各领域的业务发展和决策提供强大动力和支持,实现数据价值的最大化。在企业决策方面提供全面准确的信息:大数据能够整合企业信息及时调整营销策略,抓住市场机遇,提升市场竞争力。在客户体验优化方面个性化服务体验:根据客户的历史行为和偏好,大数据赋能企业为客户提供个性化的服务体验。例如,电商平台可以根据客户的浏览和购买记录推荐推荐给合适的客户,提高营销效果和转化率。市场洞察与趋势分析:大数据可以帮助企业实时监测市场动态和竞争对手情况,收集和分析市场上的各种信息,如消费者反馈、行业趋势、竞争对手的营销策略等。企业可以根据这些和风险评估:利用大数据分析技术,企业可以对市场趋势、客户行为、产品需求等进行精准预测。同时,通过对历史数据和实时数据的分析,能够及时发现潜在的风险和问题,并进行风险评估和预警,帮助企业提前制定应对措施的问题和不足。企业可以根据客户反馈进行针对性的改进和优化,提升产品质量和服务水平,增强客户体验。在生产运营环节优化供应链管理:大数据可以实现对供应链各环节数据的实时监控和分析,包括原材料采购、生产进度

行业资讯
什么是行业大模型?
行业大模型是指在特定行业领域应用的大型语言模型。与通用的大型语言模型相比,行业大模型更加专注于某个特定的行业,例如金融、医疗、法律等。行业大模型通过在该行业的领域数据上进行训练和优化,可以更好地理解和处理该行业的专业术语、规范和语义。行业大模型的发展得益于大数据和深度学习等技术的进步,以及对各个行业特定需求的理解。通过训练行业大模型,企业和从业者可以利用模型的语言理解和生成能力来解决该行业中的各种问题。然而,行业大模型的训练和应用也面临一些挑战。其中包括获取足够的行业数据进行模型训练、解决数据质量和隐私保护的问题,以及不断更新和优化模型以适应行业发展的需求。星环科技提供大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练

行业资讯
大数据赋能平台
大数据赋能平台是指利用大数据技术为各行各业提供支持和服务的平台,它们通过数据的收集、整合、处理和分析,帮助企业提升业务效率、优化决策和创新业务模式。以下是一些大数据赋能平台的典型应用案例和行业应用:金融行业:风险评估与管理:金融机构通过收集客户的信用记录、交易数据、资产状况等多源信息,利用大数据分析技术评估客户的信用风险、市场风险等。零售行业:商品推荐:电商平台和零售商根据用户的购买历史、浏览行为、搜索记录等数据,为用户提供个性化的商品推荐,提高用户的购买转化率和客单价。供应链管理:对销售数据、库存数据、供应商信息等进行分析,优化供应链流程,实现精准的库存管理、采购决策和物流配送。医疗保健行业:疾病预测与预防:收集和分析大量的医疗数据,包括患者的病历、症状、基因信息、生活习惯等,预测疾病的发生风险和流行趋势,提前采取预防措施。辅助诊断:医生可以利用大数据分析技术,结合患者的临床数据和医学知识库,辅助诊断疾病,提高诊断的准确性和效率。交通物流行业:物流配送优化:物流企业通过收集和分析物流过程中的数据,如货物的运输路线、运输时间、车辆的位置和状态等,优化物流配送方案,提高物流效率和

行业资讯
水利大模型
水利大模型是一种以大语言模型为核心,结合水利专业知识进行预训练和微调,通过水利知识图谱强化逻辑,以及水利专业模型耦合进行量化计算赋能,构建的水利专业领域的数据处理、逻辑理解、模型调用和智能决策的行业基于知识图谱强化构建,提升了大模型在水利领域的理解力和任务执行力。此外,水利大模型还能驱动水利专业模型计算寻优技术,实现模型参数的自适应动态优化,提升智能算法寻优效率。同时,还能赋能水利“天空地”监测感知能力的提升,通过水利大模型驱动设备智能运行、监测数据智能汇集处理、监测误差智能识别等功能的实现。。5.“可驱动设施装备”:驱动水利设施和装备。水利大模型能够降低水利复杂业务的门槛,减少业务人员重复工作量,为业务决策者提供更全面的决策信息和智能化决策方案建议。通过预训练和微调的行业领域训练范式,以及大模型。通俗来说,水利大模型是解决计算机如何理解人类关于水利的语言、如何分解水利工作流程、如何运用水利专业数据推理计算、如何按照水利业务逻辑和要素进行展示等问题的辅助决策智能工具与应用。水利大模型具备以下五个方面的行业落地能力:1.“听懂水利话”:理解水利专业语言。2.“会分解水利任务”:分解水利工作流程。3.“可调用水利专业模型”:调用水利专业模型进行计算。4.“可展示推演结果”:展示推演结果

行业资讯
数据归集与数聚赋能
加一等于二,而是通过多维数据碰撞产生指数级价值跃升。值得注意的是,赋能效果取决于数据质量而非数量,研究发现高质量数据模型比大数据量模型准确率平均高23%。从结绳记事到云存储,人类始终在寻找更有效的数据归集与数聚赋能:数字时代的隐形推手清晨醒来,手机闹钟准时响起;通勤路上,导航软件自动规划路线;午休时间,外卖APP推荐了符合口味的餐厅——这些习以为常的场景背后,隐藏着一个不为人知却重要的过程:数据归集与数聚赋能。它们如同数字世界的毛细血管,默默输送着信息养分,支撑起智能社会的运转。数据归集是指从分散源头系统采集、清洗、整合数据的过程。当数据完成归集,数聚赋能便开始展现其魔力。这并非简单的一信息处理方式。数据归集与数聚赋能作为数字化进程的双轮驱动,正在重塑我们的生活方式。它们或许隐匿在屏幕之后,却真实地让城市更智慧、医疗更精准、服务更贴心。理解这个隐形推手的运作机制,不仅有助于我们更好地使用
猜你喜欢

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...