大模型行业应用建议

行业资讯
金融行业大模型应用
大模型在金融行业的应用已经逐渐从理论走向实践,以下是一些典型的应用场景和案例:1.金融风险管理大模型技术可以用于构建更准确、更全面的风险模型,帮助金融机构评估和管理市场风险、信用风险、操作风险等,提供更精确的风险预测和决策支持,有助于金融机构制定有效的风险管理策略。2.量化交易大模型技术可以应用于量化交易策略的开发和执行。通过分析海量的金融数据和市场信息,识别出潜在的交易机会和趋势,自动执行交易策略并进行实时调整。这有助于提高交易效率,降低交易成本,提升交易的稳定性,以及增加收益。3.个性化投资建议大模型技术可以根据个体投资者的偏好和风险承受能力,生成个性化的投资建议和组合配置,辅助投资者做出更明智的决策。4.金融欺诈检测和预防大模型技术可以应用于金融欺诈检测和预防。通过分析用户的交易数据、行为模式和历史记录,识别出潜在的欺诈行为和异常交易,提高金融机构对欺诈风险的识别和应对能力,保护客户和金融系统的安全。5.智能客户服务大模型技术可以用于构建智能客户服务系统,通过提供流畅的人机对话服务,提升客户满意度和忠诚度。6.信贷业务在信贷领域,大模型主要应用于营销获客、客户运营、贷后催收
大模型行业应用建议 更多内容

行业资讯
大模型行业发展
大模型行业是一个快速发展的领域,涉及多个方面,包括市场分析、技术发展、应用领域、专业报告、专业数据集、专业框架和专业工具。大模型行业发展现状企业数量增长:大模型横空出世不到两年的时间,国内大模型企业优化,包括模型结构的改进、训练算法的创新、参数规模的扩大等。应用逐渐落地:大模型开始与千行百业逐步加深融合,从早期的理论研究和技术探索,逐渐走向实际应用和产业落地。在金融、工业、教育、医疗、政务等众多行业中,大模型都展现出了巨大的应用潜力,能够为企业和机构提供智能化的解决方案,提高生产效率、降低成本、优化决策等。大模型行业应用金融领域:可用于风险评估与信用评级,通过对海量金融数据的分析和学习,更便有了飞速增长。竞争格局初现:大模型行业的竞争激烈,头部厂商凭借自身的技术、数据、资金等优势,在市场中占据重要地位。它们通过不断的技术研发和创新,推出更强大的大模型产品,并通过降价等策略吸引更多用户和开发者,以巩固其市场份额。而一些初创企业则面临着较大的竞争压力,在成本控制、技术实力、市场份额等方面相对较弱,需要寻找差异化的竞争策略或与其他企业合作来谋求发展。技术不断进步:大模型的技术在不断演进和

行业资讯
大模型落地应用的多个领域
大模型的落地应用正在多个领域和行业中逐步展开,以下是一些具体的应用场景和进展:1.智能客服领域应用方式:大模型可以理解用户咨询的问题,并生成准确的回答。例如,当用户询问产品的功能、使用方法、故障排除生成领域应用方式:在新闻媒体行业,大模型可以根据新闻事件的线索和数据生成新闻稿件。例如,体育赛事的新闻报道,大模型可以根据比赛结果、关键球员数据等信息快速生成新闻内容,编辑人员再进行审核和修改,提高,提高公众的健康素养。4.金融行业应用方式:智能投研方面,大模型可以分析海量的金融市场数据、公司财报、行业新闻等信息,挖掘投资线索,生成投资报告。例如,通过对多家上市公司的财务报表进行分析,预测公司的格,帮助创作者拓展思路。3.医疗健康领域应用方式:辅助医疗诊断,大模型可以对患者的症状描述、病历、检查报告等信息进行分析,提供可能的疾病诊断参考。例如,当患者在在线医疗平台上描述自己的症状时,大模型结合教育领域应用方式:作为智能学习助手,为学生提供学习方法指导、学科知识答疑。例如,学生在学习数学遇到难题时,大模型可以用通俗易懂的方式解释知识点,帮助学生解决问题。协助教师进行课程设计、教学资源整合和作业

行业资讯
行业大模型9大典型场景应用
。智慧医疗:在医疗健康行业,大模型的应用包括疾病诊断、个性化治疗计划制定、药物研发等。通过分析患者的医疗记录、基因信息和生活习惯,AI模型能够提供更准确的诊断建议,甚至在某些情况下,能够发现人类医生效地执行专业性更强的任务。以下是一些行业大模型的典型应用:智慧能源:在智慧能源领域,大模型可以帮助优化能源分配和消耗。例如,通过分析历史数据和实时信息,模型可以预测能源需求,优化电网负荷,减少能源浪费行业大模型是指针对特定行业或领域的需求,采用大规模数据训练和先进算法的深度学习模型。与通用大模型相比,行业大模型更注重对垂直细分领域的数据进行有针对性的训练和优化,以更好地理解行业的语义和规范,更有中,大模型可以分析天文数据,帮助科学家发现新的星体和宇宙现象。智慧金融:金融行业利用大模型进行风险评估、欺诈检测、投资策略优化等。AI模型能够分析市场数据,预测股票走势,为投资者提供决策支持。自动驾驶可能忽略的细微症状。智慧城市:智慧城市利用大模型来提高城市管理效率和居民生活质量。例如,通过分析交通流量数据,模型可以优化交通信号灯控制,减少拥堵。在环境监测方面,AI可以帮助监测空气质量,预测并应对

2023年作为大模型元年,AI行业重新洗牌,各行业应用+大模型的模式纷纷落地,行业主管部门也纷纷牵头大模型语料的组建,聚焦高质量语料的积累、开放共享及安全治理,逐步完善大模型生态构建,确保大模型更好地应用落地。针对垂直类的专家型应用场景,仅用思维链、微调及外挂行业知识库方式是无法满足实际业务需求的,企业至少需要对通用大模型做二次预训练及微调,才能实现一款专家级别的大语言模型。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。

行业资讯
金融行业大模型
需要包含多个子模型,如银行模型、资本市场模型、保险模型、货币政策模型、宏观经济模型等。这些子模型需要进行有效的集成和数据共享,以便全面考虑各种经济情况下的金融风险和影响因素。金融行业大模型可以应用于风险控制、投资分析、政策测等方面,帮助金融机构和政府进行风险管理和决策制定。同时,它也可以作为智能投顾和金融科技的基础模型,提供更加精准的投资建议和咨服务。星环无涯金融大模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融行业智能投研大模型无涯Infinity。星环科技面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。星环科技无涯使用了上百类特定事件类型和20多万事件实例,完成对大模型的指令微调,从而使得无涯能够对齐专业研究员的分析推理能力,更加智能和可靠。在此基础上,星环科技无涯构建了包括政策、舆情、ESG、风险、量价、产业链等六类大模型基础因子集,所构建的复合因子体系满足投资经理的需求。从应用上看,无涯金融大模型强化以下几个能力:第一,针对

行业资讯
大模型在金融行业的应用
大模型在金融行业的应用包括但不限于以下方面:风险评估:大模型可以融合金融行业的知识和数据用于风险评估,帮助金融机构做出更精准的风险决策,大幅提升风险稳定性。例如,如果将各类金融大数据、不同行业的数据、宏观经济数据注入大模型,则可以进行有效的风险预警和预测,降低整个社会的金融风险。市场预测:大模型也可以应用在市场预测上。例如,通过融合各类金融市场数据,大模型可以帮助金融机构更准确地预测市场趋势,从而更好地把握市场机会。欺诈检测:大模型在欺诈检测方面也具有应用价值。通过分析大量的交易数据,大模型可以检测出异常交易行为,及时发现并防止欺诈行为的发生。用户理解和需求匹配:大模型可以处理大量的用户数据,更好地理解和响应用户需求,让产品和用户需求更精准地匹配。例如,基于大模型技术,金融机构可以分析用户的消费行为、偏好和需求,从而更好地设计产品和服务,提高用户满意度。星环无涯金融大模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融行业智能投研大模型无涯

行业资讯
大模型在金融业应用
金融领域是大模型应用的一个热门领域,大模型可以通过深度学习、机器学习等技术来处理和分析,提高金融行业的效率和精度。以下是模型在金融业中的应用:风险管理:大模型可以通过对历史数据的分析和学习,来预测未来可能出现的风险和危机。投资决策:大模型可以处理复杂的市场数据和趋势,提供更加准确的投资建议交易分析:大模型可以对交易数据进行实时监控和分析,识别出异常交易和欺诈行为,从而降低交易风险和提高交易效率通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融行业智能投研大模型无涯Infinity。星环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。无涯金融大模型强化以下几个能力:第一,针对金融行业,拥有准确理解和合理分析、债券、基金、商品等各类市场事件进行全面的复盘、传播和推演。第三,构建六类大模型基础因子集,支撑复合因子策略体系,能够生成策略因子集合,构建立体的归因解释体系。星环科技长期深耕金融领域,服务大量金融行业

随着人工智能技术的不断发展和进步,AI大模型已经成为各行业应用的重要支撑。AI大模型具有强大的数据处理和学习能力,能够帮助各行业实现自动化、智能化、高效化的处理和决策。目前,AI大模型已经在医疗等方面的应用,提高生产效率和产品质量。随着AI大模型的落地加速,各行业应用生态也在加速形成。越来越多的企业和机构开始将AI大模型技术应用于自身的业务中,探索新的商业模式和创新点。同时,也涌现出了一批基于AI大模型技术的创新创业企业,为各行业提供更加智能化、高效化的解决方案和服务。、金融、教育、制造等众多领域得到了广泛应用。在医疗领域,AI大模型可以帮助医生进行疾病诊断和治疗方案制定,提高诊断准确率和治疗效果。在金融领域,AI大模型可以用于风险评估、信用评级、投资决策等方面,提高金融服务的智能化水平和风险控制能力。在教育领域,AI大模型可以根据学生的学习情况和反馈进行智能化的教学设计和推荐,提高教学质量和学生学习效果。在制造领域,AI大模型可以实现智能制造、智能监控、智能维护

行业资讯
大语言模型正在重塑政府行业知识应用
近日,IDC发布《大模型背景下的政府行业知识图谱市场分析,2023》报告,分析了政务知识应用的主要场景及面临的挑战,大语言模型和知识图谱在知识应用市场的作用,未来如何演进。星环科技作为政府行业知识应用主流供应商入选IDC《大模型背景下的政府行业知识图谱市场分析,2023》报告。报告指出,大语言模型正在重塑政府行业知识应用。大模型的本质是文本生成,基于上下文进行内容扩充,基于已知知识概率大推测,真实性不能保证。知识图谱的本质是利用结构化的数据提供准确的知识,通过知识图谱保证准确,消除大模型的幻觉。知识图谱能够为通用大模型的行业化应用提供行业领域知识支撑,弥补通用大模型语料里专业领域知识的不足。结合知识图谱的知识关联和大模型的推理生成能力,将解决在具体行业场景落地过程中的准确性、安全性、交互性等多方面的应用要求。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。星环科技在知识图谱领域深耕多年,有着深厚的技术沉淀和实践经验,同时积极探索大语言模型结合知识图谱在政府知识管理中的应用。
猜你喜欢

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...