大模型可以单独购买么
大模型可以单独购买么 更多内容

行业资讯
大模型应用
推荐系统领域也有广泛应用。如,可以用于预测用户的购买行为、点击行为等。类似地,可以用于预测用户的兴趣爱好等。大模型在各个领域都有广泛的应用,可以为人们提供更好的服务和更高效的工作方式。随着数据和计算能力大模型是指基于大量数据和强大计算能力构建的复杂模型,可以模拟和预测各种现象和行为。大模型在各个领域都有广泛的应用,以下是几个具体的例子:自然语言处理:大模型在自然语言处理领域的应用非常广泛。如,可以用于多种自然语言处理任务,如情感分析、文本分类、命名实体识别等。也可以用于生成文本、回答问题、提供有关信息等。计算机视觉:大模型在计算机视觉领域也有广泛应用。如,可以用于图像分类、目标检测、图像分割等任务。类似地,可以在移动设备和嵌入式设备上运行。语音识别:大模型在语音识别领域也有广泛应用。如,可以用于语音转文本、语音命令识别等任务。类似地,可以用于语音转文本、语音合成等任务。推荐系统:大模型在的不断增加,大模型的应用也将越来越广泛。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型

行业资讯
大模型如何帮助企业实现智能化数据分析?
企业实现智能化数据分析?数据分类和聚类:大模型可以自动对大量数据进行分类和聚类。例如,一个电子商务网站可以使用这些技术来理解其用户群体的不同类型,并根据其购买行为和偏好进行市场细分。预测分析:大模型、预测天气变化或改进医疗诊断。个性化体验:通过理解用户的行为和偏好,大模型可以帮助企业提供更个性化的服务。例如,推荐系统可以使用深度学习模型来理解用户的历史购买行为,并为其提供更准确的商品推荐。风险和大模型可以帮助企业实现更高级的数据分析,并更深入地理解业务。这些模型通常被称为深度学习模型,大模型使用大量的数据进行训练,并通过自然语言处理、图像识别等技术理解和解释现实世界的数据。大型模型如何帮助可以通过监督学习进行训练,以根据历史数据预测未来结果。例如,一个零售商可以使用这种技术来预测销售额,从而更好地规划生产和库存管理。自然语言处理:大模型可以理解和生成自然语言。企业可以更容易地自动解析和理解大量的文本数据,例如客户反馈、社交媒体帖子或产品评论。图像和视频分析:大模型也可以处理图像和视频数据。这使得企业可以对产品照片、卫星图像、医疗扫描等进行分析。例如,可以帮助企业更准确地识别产品缺陷

行业资讯
大数据模型
大数据模型是指利用大数据技术构建的,从海量数据中提取有价值信息的数学模型。以下是关于它的详细介绍:目的与作用挖掘信息价值:大数据模型旨在从海量、多样、快速增长的数据中,通过特定的算法和技术,提取出隐藏在其中的有价值信息和知识,比如消费者的购买偏好、疾病的发病模式等。支持决策优化:依据对数据的分析和理解,为企业、组织或个人提供决策支持,辅助制定更科学、合理的策略,如企业的市场推广策略、医院的治疗,利用算法构建预测模型和推荐系统等。可视化与决策支持:将分析结果以可视化的形式,如图表、地图、仪表盘等展示给用户,帮助用户理解和解读分析结果,同时结合业务场景,提供智能化的决策支持服务,如自动推荐、预警系统等。常见类型预测模型:用于预测未来的趋势或行为,例如时间序列分析模型可对未来的销售数据、股价走势等进行预测;回归模型能根据自变量预测因变量的取值。描述模型:用于解释现有数据的规律或特征,像聚类模型将数据分成不同的群体,以发现数据集中的内在结构和规律;关联规则模型用于发现数据之间的关联关系。应用场景金融领域:用于信用评估、风险控制、投资决策等,如通过分析客户的交易记录、信用记录等数据,评估客户的

行业资讯
大模型应用管理
深度挖掘和分析。通过对客户浏览历史、购买偏好、评价反馈等多维度数据的学习,大模型能够精准预测客户的下一次购买行为,为客户提供个性化的商品推荐。(二)生活场景赋能大模型也正悄然改变着我们的日常生活,为解锁大模型应用管理:开启智能时代新征程大模型:重塑世界的智能引擎大模型,通常指那些拥有海量参数、基于深度学习架构,并在大规模数据上进行训练的人工智能模型。这些模型具备强大的语言理解、生成和逻辑推理能力,能够处理复杂多样的任务。大模型的应用领域之广泛,几乎涵盖了人类生活的每一个角落。在医疗行业,大模型助力医学影像分析,能够快速、准确地识别病变,辅助医生进行疾病诊断,提高诊断效率和准确性,为患者争取宝贵的治疗时间;在教育领域,智能辅导系统基于大模型开发,能够根据学生的学习情况提供个性化的学习方案,实现因材施教,帮助学生更好地掌握知识;在工业制造中,大模型用于生产流程优化和设备故障预测,降低生产成本,提高生产效率和产品质量,增强企业的竞争力。大模型应用全景:多领域开花(一)企业管理变革在企业管理的广袤版图中,大模型正掀起一场深刻的变革。以客户管理为例,某知名电商企业借助大模型对海量客户数据进行

行业资讯
垂直大模型,垂直大模型的优势和应用场景
垂直大模型是特定领域或行业中应用的大规模机器学习模型,专注于处理该领域内的特定任务或数据。例如,在医疗、生物信息学、金融等垂直行业,垂直大模型可以用于疾病预测、金融风险评估等任务。与通用大模型相比,垂直大模型更具针对性,性能上往往更为优化。垂直大模型的优势相比于通用大模型,垂直大模型在几个方面有其独特的优势:数据专注性:专注于特定领域的数据,训练过程中可以更好地捕捉领域特性和细微差异。性能优化:利用领域知识进行模型和算法的优化,提高准确性和效率。实用性强:直接应用于特定行业的具体问题,提供更高效的解决方案。法规和合规性:在受规管行业,如医疗和金融,更容易满足行业特定的法规和合规要求。垂直大模型在实际应用中,通过利用海量的行业数据和专业知识,实现了更精确、更高效的任务处理能力。垂直大模型的应用场景有哪些?垂直大模型在不同领域的应用广泛,如:医疗领域:疾病诊断:通过分析医学影像、电子病历和:通过大规模数据分析和预测市场趋势,辅助投资决策。零售和电商:推荐系统:根据用户行为和购买历史,提供个性化的商品推荐。库存管理:通过预测未来的市场需求,优化库存管理和供应链流程。制造业:预测性维护

行业资讯
大模型一体机,加速AI应用落地
这些问题提供了新的思路,正在加速AI技术在各行业的实际应用。大模型一体机的概念与特点大模型一体机是一种将大型AI模型、专用硬件和优化软件集成在一起的完整解决方案。它不同于传统的云计算服务或单独购买服务器、计算调度和流水线设计等技术,一体机能够提高硬件利用率。此外,许多产品还支持多模型并行服务,可以同时满足不同应用场景的需求。行业应用场景大模型一体机正在多个行业展现其价值。在金融领域,银行和保险公司利用大模型一体机:加速AI应用落地在人工智能技术快速发展的今天,大型预训练模型已成为推动AI进步的核心力量。然而,这些模型的部署和应用面临着计算资源需求高、技术门槛高等挑战。大模型一体机的出现,为解决的方式,而是提供"开箱即用"的体验,用户无需关心底层复杂的配置和优化问题。这类设备通常具备几个显著特点:首先是硬件与软件的深度协同设计,确保模型能够效率较高地运行;其次是预装了经过优化的大型模型,省去了用户自行训练或微调的时间;再者是提供了友好的交互界面,降低了使用门槛;此外还考虑了数据安全和隐私保护,特别适合对数据敏感性要求高的场景。技术实现的关键突破大模型一体机之所以能够有效运行,依赖于多项

行业资讯
大模型语料开发
。大模型通常需要海量的文本数据,这些数据可以来源于互联网、书籍、学术论文、新闻报道等多种渠道。互联网是一个重要的数据来源,因为它包含了丰富的语言表达形式和多样的主题。然而,互联网数据也包含大量噪声和大模型语料开发在人工智能领域,大模型已经成为推动技术进步的重要力量。这些模型能够理解和生成人类语言,完成复杂的任务,如自动翻译、文本摘要和对话生成。然而,大模型的性能很大程度上依赖于其训练所使用的语料。语料开发作为大模型训练的基础工作,直接影响着模型的质量和应用效果。本文将介绍大模型语料开发的基本概念、流程和挑战。语料,即语言材料,是指用于训练和测试语言模型的文本数据。对于大模型而言,语料不仅不准确的信息,因此在收集过程中需要特别注意数据的质量和代表性。除了公开可用的数据,一些机构还会通过合作或购买的方式获取特定领域的专业数据,以增强模型在特定任务上的表现。数据清洗是语料开发中不可或缺的环节对数据进行标准化处理,例如统一日期格式、缩写形式等,以提高数据的一致性。清洗后的数据不仅更干净,还能减少模型训练时的计算负担。数据标注是为语料添加额外信息的过程。虽然大模型通常以无监督或自监督的方式训练,但在

行业资讯
大模型平台
大模型平台是集成了大模型技术、数据处理、模型训练、评估与部署等全栈能力的服务平台。可以为企业提供高效、便捷的大模型应用解决方案,帮助企业快速构建和部署基于大模型的智能应用。大模型平台优势与特点高效便捷:提供一站式大模型开发工具链和基础设施,降低企业使用大模型的门槛和成本。灵活定制:支持根据企业需求进行模型定制和微调,满足不同行业和场景的应用需求。安全可靠:采取高标准的数据安全管理措施,确保企业数据的安全性和隐私保护。持续更新:平台支持大模型的持续更新和优化,确保企业能够享受到新的大模型技术成果。大模型平台应用场景大模型平台广泛应用于金融、传媒、文旅、政务、教育等多个行业场景,为这些行业提供定制化的智能解决方案。例如:金融行业:利用大模型平台进行风险评估、欺诈检测、智能投顾等应用。传媒行业:通过大模型平台实现内容生成、舆情分析、个性化推荐等功能。文旅行业:利用大模型平台提升旅游体验,实现智能导览、个性化旅游规划等应用。政务行业:借助大模型平台优化政务服务流程,提高政府决策的科学性和精准性。

行业资讯
什么是大语言模型?
大语言模型(LargeLanguageModel)是指使用大量文本数据训练的深度学习模型,可以生成自然语言文本或理解语言文本的含义。大语言模型可以处理多种自然语言任务,如文本分类、问答、对话等,是人工智能领域非常重要的应用技术。大语言模型的应用非常广泛,包括但不限于:文本分类:大语言模型可以通过对文本内容的整体把握和理解,将文本进行分类。例如,对一篇文章进行主题分类、情感分类等。问答系统:大语言模型可以根据问题文本生成对应的答案文本,实现问答系统的功能。机器翻译:大语言模型可以在源语言和目标语言之间进行翻译,实现跨语言沟通。文本生成:大语言模型可以根据特定的输入,生成符合要求的文本。例如,根据一段输入文本生成相应的摘要、续写等。大模型持续开发和训练工具为了满足企业应用大语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的大模型持续开发和训练工具——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来的、具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。针对大语言模型及其衍生数据、模型和应用方面的问题
猜你喜欢

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...