AI大底座 大数据 大模型

行业资讯
AI模型底座
智能交通系统,再到医院的AI辅助诊断,背后都离不开AI模型底座的支撑。AI模型底座是一个复杂的系统工程,主要由三核心要素构成:算法框架、计算能力和数据资源。算法框架如同大脑的神经网络,决定着AI的思考方式;计算能力好比肌肉,提供强大的运算支持;数据资源则是养分,让AI不断学习成长。这三者相互配合,共同构建起AI模型的坚实基础。在技术特征方面,AI模型底座展现出三特点:强大的泛化能力AI模型底座:智能时代的“数字地基”在人工智能技术快速发展的今天,AI模型底座正悄然成为支撑智能时代的"数字地基"。这个看似专业的名词,实际上与每个人的生活息息相关。从手机里的语音助手,到街头的、有效的迁移学习能力和持续的自进化能力。泛化能力使AI能够处理各种复杂场景,迁移学习能力让AI可以快速适应新任务,自进化能力则确保AI系统能够与时俱进。这些特性使得AI模型底座成为推动智能化应用的核心引擎。当前,AI模型底座已经在多个领域展现其价值。在医疗领域,它帮助医生更快更准确地诊断疾病;在教育领域,它为学生提供个性化的学习方案;在工业生产中,它优化生产流程,提高效率。这些应用不仅提高了社会

AI大底座 大数据 大模型 更多内容

行业资讯
模型底座
模型底座是支撑模型训练和应用的基础设施和技术框架,是构建模型的基础支撑部分。AI底座作为模型时代的基础设施,不仅提供从数据管理到模型部署的全方位服务,还在各个行业中展现出广泛的应用潜力。作用与意义提供基础架构支持:模型底座为整个大模型的构建提供了底层的技术框架和基础设施,包括硬件架构、软件架构、通信机制等,确保模型能够高效地运行和处理规模的数据。承载和预处理数据:负责数据的收集、存储、清洗、标注等预处理工作,将海量的原始数据转化为适合模型训练的格式,为模型提供高质量的数据输入,从而保障模型学习到准确、有用的知识。支持模型训练与优化:底座提供了强大的计算资源和优化算法,能够加速模型的训练过程,提高训练效率,同时通过各种优化手段,如调整参数、改进架构等,不断提升模型的性能和表现。实现模型的通用性和扩展性:一个好的模型底座能够使模型具备较强的通用性,适用于多种不同的应用场景和和共享。算力层:硬件设备:包括高性能的、计算芯片,以及规模的存储设备和高速网络设备,为模型训练和推理提供强大的计算能力和数据传输能力。算力调度与管理:通过分布式计算、云计算等技术,实现对计算资源的灵活
随之而来。为解决这些问题,构建一个高效、可靠的AI模型应用开发底座至关重要。AI模型应用开发底座模型时代的核心基础设施,能提供从数据采集、标注、清洗、存储、传输,到模型训练、部署、推理等全流程服务发,更好地满足企业内部复杂的业务流程和数据安全要求。而对于需要快速迭代和灵活扩展的初创公司或研究机构,使用云服务商提供的AI模型应用开发底座服务则更为合适。这些服务基于云计算技术,具有弹性可伸缩支持。为构建一个高效、可靠的底座,需综合考虑高性能计算能力、大数据管理能力、自动化机器学习平台、模型可扩展性和安全性与隐私保护等多方面问题。在实际应用中,根据具体情况选择合适的方案,并遵循标准化与开放性在大数据和算力不断发展的当下,模型已成为人工智能领域的重要趋势,在语音识别、自然语言处理、计算机视觉等众多领域成果显著。然而,随着模型规模持续增大,训练成本高、推理速度慢、可扩展性差等问题也。它如同搭建高楼的基石,为模型的开发与应用筑牢根基。一个优秀的AI模型应用开发底座具备诸多关键特点:高性能计算能力:需要配备强大的计算能力,像高性能计算机集群、GPU服务器、专用芯片等硬件设备,以及
行业资讯
AI模型
提升,以及训练数据集的不断扩大,AI模型的应用和研究越来越受到关注。AI模型具有以下几个特点:高度复杂性:AI模型拥有大量的参数,可以对更加复杂的问题建模和学习。相比于传统的机器学习算法,模型用户数据。这对于数据隐私和安全提出了挑战,需要合理的数据使用和保护措施。AI模型在许多领域都有着广泛的应用。例如,在自然语言处理领域,模型能够实现更加准确和流畅的文本生成、机器翻译和问答系统;在一个工具链来开发模型。星环科技作为国内领先的大数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的模型分布式图数据库StellarDB,能够赋予模型“长期记忆”,打破通用模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融模型Infinity、大数据分析模型SoLar“求索”,促进金融分析和大数据分析的平民化。星环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化大数据技术生态,推动数字
模型AI是指使用大量数据和计算资源来训练高级人工智能(AI模型的技术。随着数据的大量增长和计算能力的提高,AI系统的性能也在不断提高。模型AI的目标是提高AI系统的表现,使其更加适应各种复杂的情况和任务。模型AI通常使用深度学习框架,来构建和训练模型。这些框架提供了强大的工具和库,使研究人员能够更容易地处理大规模数据集,构建复杂的神经网络结构,并进行高效的计算。模型AI的应用非常广泛,帮助客户将原型的语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的语言模型模型的持续提升。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业的星环金融模型无涯,以及大数据分析模型SoLar“求索”。。然而,模型AI的培训和推理需要大量的计算资源和时间。模型AI通常需要强大的硬件基础设施和优化的软件环境才能运行。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出
,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融模型Infinity、大数据分析模型SoLar“求索”,促进金融分析和需要大量的计算资源和高性能硬件支持。这些模型通常由多个层次构成,每个层次包括了许多神经元,每个神经元都有一些权重,这些权重需要通过大量的训练数据进行调整,以使模型能够更准确的预测结果。AI模型广泛应用大数据分析的平民化。星环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化大数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式语言模型,融合了大显身手,有力辅助分析师、研究员和投资经理的日常工作,帮助企业更好地应对复杂的市场环境和业务需求,持续促进整体行业的降本增效与科技创新。求索具备大数据行业需求理解、推理、各类(含多模型)结构化查询语言随着技术的发展和计算能力的提高,AI模型成为了当今AI领域的火热话题。AI模型具有广泛的应用领域,如自然语言处理、图像识别、机器翻译等。AI模型是指参数数量超过数百万的深度神经网络模型,通常
行业资讯
大数据底座
大数据底座大数据生态系统的基础支撑部分,是一个综合性的基础设施架构,为大数据的采集、存储、处理、分析等一系列操作提供坚实的底层支持。它就像一个稳固的平台,承载着海量数据和各种大数据应用,确保数据的,保证数据质量。数据安全:采取多种安全措施,如用户认证和授权、数据加密、访问控制等。在金融和医疗等敏感数据领域,数据安全尤为重要。作用和优势数据整合与统一管理:大数据底座能够将来自企业内外部不同渠道的数据,支持从简单的数据查询到复杂的数据分析和机器学习应用。企业可以利用大数据底座进行规模的用户行为分析、市场预测等。确保数据质量和安全:通过数据治理和安全体系,保障数据的质量和安全,降低数据风险。这使得企业可以放心地使用数据进行决策,并且符合法律法规对数据的要求。提高系统的灵活性和可扩展性:可以根据企业业务的发展和数据量的增长,灵活地调整硬件和软件资源,如增加服务器、扩展存储容量、升级计算框架等。这使得大数据底座能够适应企业长期的数据战略需求。存储系统中的存储节点。网络设备:高性能的网络交换机和路由器等设备,确保数据在不同服务器之间、数据中心内部以及与外部网络之间的高速传输。在处理实时大数据流时,良好的网络设备能够减少数据传输延迟。数据
行业资讯
AI大数据治理
迅猛发展,数据以前所未有的速度产生和积累,这些数据涵盖了我们生活、工作的方方面面,成为了AI发展不可或缺的“燃料”。AI大数据紧密相连、相辅相成。大数据AI提供了丰富的训练数据,让AI模型能够学习到更多及时发现和防范潜在的风险。比如,在金融领域,通过对客户信用数据、交易数据等的实时监控和分析,利用AI模型预测潜在的欺诈行为和信用风险,提前采取措施进行防范,避免企业遭受重大损失。促进业务创新是AI大数据治理AI浪潮下,大数据治理如何破局与进阶?AI大数据:时代的强音在当今数字化浪潮中,AI大数据无疑是最为耀眼的双子星。AI,凭借其强大的机器学习、深度学习能力,正快速渗透到各个领域,从医疗诊断到智能交通,从金融风控到艺术创作,AI的身影无处不在,它让机器拥有了近似人类的智能,能够理解、学习、推理和决策,极大地提升了效率和创新能力。而大数据,则像是一座蕴藏无限价值的宝藏,随着互联网、物联网的的模式和规律,从而提升其准确性和智能水平;而AI则为大数据的分析和挖掘提供了强大的工具,使我们能够从海量、复杂的数据中提取出有价值的信息,实现数据的价值最大化。例如,在医疗领域,通过对大量患者的病历
行业资讯
模型AI
模型AI,即大型人工智能模型,是指具有大量参数和复杂结构的人工智能模型,通常用于处理和生成自然语言、图像、音频等多种类型的数据。这些模型通过深度学习技术进行训练,能够理解和生成与人类语言相似的文本,进行图像识别,甚至进行语音合成等。模型AI是一种具有海量参数和高度复杂性的神经网络模型,能够处理和分析大规模数据,并生成高质量的内容或进行高效的决策。特点:参数规模模型AI通常包含数以亿计甚至更多的参数,这使得它们能够捕捉和表示更复杂的特征和模式。结构复杂:这些模型由多个层次和组件组成,包括输入层、隐藏层和输出层等,每一层都有特定的功能和作用。数据驱动:模型AI的性能和效果在很大程度上取决于训练数据的数量和质量。通用性强:模型AI可以应用于多个领域和任务,表现出很强的通用性和适应性。模型AI应用场景模型AI在多个领域都有广泛的应用,包括但不限于:自然语言处理:模型AI在自然语言处理方面表现出色,可以应用于对话系统、自动翻译、语音识别、文本生成和语义分析等领域。图像处理:在图像处理领域,模型AI可以用于图像识别、图像生成、图像增强和人脸识别等任务。视频处理:模型AI
行业资讯
AI模型
和原则也指导着模型的设计和应用。AI的发展推动了模型的兴起:随着AI技术的进步,特别是深度学习的发展,研究人员开始探索更大、更复杂的模型,以处理更复杂的任务和数据集。这些模型因为参数数量巨大而得名“模型”。模型AI的强力工具:模型因其庞大的参数量和深度学习能力,能够捕捉和学习数据中的复杂模式和关系,这使得它们在自然语言处理(NLP)、计算机视觉、语音识别等领域表现出色。模型提升了AI分布式训练、模型并行、混合精度训练等技术,使得训练具有数十亿甚至数千亿参数的模型成为可能。模型AI的挑战:模型需要大量的数据和计算资源,这对数据隐私、能源消耗和模型解释性提出了挑战,也是AI领域AI(人工智能)和模型(LargeModels)之间的关系是密切且相互促进的。模型AI领域的一个重要分支,它们的发展和应用正在推动AI技术的进步,并在多个领域产生深远影响。同时,AI的总体目标的能力和应用范围:模型通过预训练和微调,能够处理多种任务,从语言翻译、文本摘要到图像识别和生成,极大地扩展了AI的应用范围。AI技术的进步使得模型训练成为可能:随着计算能力的提升和算法的优化,如
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...