大模型文本抽取系统

行业资讯
大语言模型语料库
大语言模型语料库是指用于训练大语言模型的大量文本数据集合。这些语料库通常包含各种类型的文本,如书籍、新闻文章、网页内容、社交媒体帖子、学术论文等,以确保模型能够学习到广泛的语言模式和知识。以下是大方法ETL工具:用于数据抽取、转换和加载。数据清洗工具:用于数据清洗和预处理。标注工具:用于数据标注和标注管理。向量化工具:用于文本向量化。聚类工具:用于文本聚类。5.语料库的存储和管理文件系统:将信息、重复内容等,确保数据的质量。数据标注:对文本进行标注,如词性标注、命名实体识别、情感分析等,为模型提供更丰富的语义信息。数据向量化:将文本转换为模型可以处理的向量形式,常用的方法包括词嵌入和句子嵌入。数据聚类:将相似的文本聚类,以便模型更好地学习语言模式和主题。3.语料库的类型通用语料库:包含多种类型的文本,覆盖广泛的主题和领域。领域特定语料库:针对特定领域或行业,如医疗、金融、法律等,提供更专业的知识和术语。多语言语料库:包含多种语言的文本,帮助模型学习多语言的表达和翻译能力。标注语料库:经过人工或自动标注的语料库,提供更丰富的语义信息,如情感分析、命名实体识别等。4.语料库的构建工具和
大模型文本抽取系统 更多内容

行业资讯
大模型问答系统
大模型问答系统是基于大规模预训练语言模型构建的,能够理解用户问题,并生成准确、有用回答的智能系统。它融合了自然语言处理领域的多种先进技术,为用户提供便捷高效的知识获取途径。关键技术大规模预训练模型:通过在海量文本数据上进行无监督学习,模型能够学习到语言的语法、语义和语用等多方面知识。这些模型参数量巨大,能够捕捉到语言中复杂的模式和关系。注意力机制:让模型在处理文本时,能够聚焦于与当前问题相关的进行进一步训练,使其更好地适应特定的问答场景。比如针对医疗领域的问答,使用医学文献和病例数据对模型进行微调,可显著提升其在该领域的回答准确性。系统架构问题理解模块:对用户输入的问题进行解析,包括分词、词性标注、句法分析和语义理解等,将问题转化为模型能够理解的特征表示。知识检索模块:从庞大的知识库或语料库中检索与问题相关的信息,为生成回答提供依据。知识库可以是结构化的知识图谱、非结构化的文本集合等关键信息,忽略无关内容,从而更准确地理解问题和生成回答。例如,在分析一个包含大量背景信息的问题时,注意力机制能帮助模型快速定位到核心疑问点。微调技术:基于预训练模型,使用特定领域或任务相关的数据对模型

行业资讯
什么是大语言模型?
人工智能领域非常重要的应用技术。大语言模型的应用非常广泛,包括但不限于:文本分类:大语言模型可以通过对文本内容的整体把握和理解,将文本进行分类。例如,对一篇文章进行主题分类、情感分类等。问答系统:大语言模型可以根据问题文本生成对应的答案文本,实现问答系统的功能。机器翻译:大语言模型可以在源语言和目标语言之间进行翻译,实现跨语言沟通。文本生成:大语言模型可以根据特定的输入,生成符合要求的文本。例如大语言模型(LargeLanguageModel)是指使用大量文本数据训练的深度学习模型,可以生成自然语言文本或理解语言文本的含义。大语言模型可以处理多种自然语言任务,如文本分类、问答、对话等,是,根据一段输入文本生成相应的摘要、续写等。大模型持续开发和训练工具为了满足企业应用大语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的大模型持续开发和训练工具——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来的、具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。针对大语言模型及其衍生数据、模型和应用方面的问题

行业资讯
LLM 大语言模型
大语言模型(LLM)是指使用大量文本数据训练的深度学习模型,可以生成自然语言文本或理解语言文本的含义。大语言模型可以处理多种自然语言任务,如文本分类、问答、对话等。大语言模型通常使用大规模的语料库进行训练,这些语料库包含了大量的文本数据,涵盖了各种领域和语言风格。通过训练,大语言模型可以学习到文本数据的内在特征和规律,从而在各种自然语言处理任务中表现出色。大语言模型的优势在于其能够处理复杂的自然语言任务,并且生成的文本质量较高。此外,由于大语言模型经过了大量的文本数据训练,因此其具有很好的泛化性能,可以适应多种场景和应用。LLM大语言模型的应用场景主要集中在自然语言处理、机器翻译、智能写作、智能客服、智能语音助手、自然语言推理等领域。自然语言处理:LLM可以用于文本生成、情感分析、语言翻译等领域,帮助人们快速生成高质量的文章、简历、报告等。机器翻译:特别是在处理长文本和专业术语时效果更为显著。智能写作助手:可以利用LLM的文本生成能力,帮助人们快速生成高质量的文章、简历、报告等。智能客服机器人:能够帮助用户解决问题和提供相关服务。这类应用可以在电子商务、在线教育、医疗健康等领域得到

行业资讯
大模型系统
各种复杂的任务,如自然语言处理、图像识别、语音识别等。大模型系统应用基于大模型的智能系统催生了许多新一代的智能应用,涵盖了文本、语音、图像、视频等多模态信息和知识的处理及应用。对话系统是最常见的应用大模型系统是一种基于大规模数据训练的人工智能系统,具有强大的语言理解、生成和推理能力。大模型系统定义大模型,也称为基础模型,是指具有大量参数和复杂结构的机器学习模型。这些模型能够处理海量数据、完成之一。大模型系统技术进展大模型技术在增强实时性和真实性、支持多模态、扩展知识和技能、连接物理世界、改进复杂推理、自主智能体等方面都有了很大进展。大模型系统性能评估大模型评估是测试和衡量大模型在现实世界情境中表现的过程,是了解大模型性能的关键。评估框架和工具提供了标准化的基准,以衡量和提升语言模型的性能、可靠性和公正性。大模型系统未来趋势技术进步与市场规模增长:大模型技术取得了显著进步,推动了新一轮人工智能技术发展热潮。市场规模快速增长,预计未来几年内将持续这一增长趋势。政策支持与产业落地:中国政府出台了一系列政策和措施来推动大模型行业的快速发展。应用场景多元化:大模型技术的应用场景日益多元化,正

行业资讯
大模型 API 调用
大模型API调用是指通过编程接口(API)与预训练的大型机器学习模型进行交互的过程。这些API允许开发者将大模型集成到自己的应用程序中,以实现各种功能,如文本生成、语言翻译、问答系统等。以下是一般文档熟悉接口规范:仔细阅读平台提供的API文档,了解API的请求方法、请求参数、返回值格式等详细信息。不同的大模型API可能有不同的接口规范和要求。掌握参数含义:明确各个参数的含义和作用,如输入文本情况下大模型API调用的步骤和相关要点:注册与获取凭证注册账号:选择提供大模型API的平台,如百度智能云千帆大模型平台、阿里云灵积平台等,在其官网完成注册账号的操作。创建应用或项目:登录后,在平台控制台、状态码、错误信息等。需要对响应进行解析和判断,提取有用的信息,并根据业务逻辑进行相应的处理。注意事项遵守使用条款和限制:在调用大模型API时,务必遵守平台的使用条款和限制,如调用频率限制、数据使用规定、生成文本的长度限制、温度参数等。温度参数用于控制生成文本的随机性,较高的温度值会使生成的文本更具多样性,但也可能导致结果不够准确;较低的温度值则会使生成的文本更倾向于确定性的回答.查看示例代码:API

行业资讯
大模型LLM
识别、关系抽取等。机器翻译:LLM可以高效地进行多语言翻译,为跨语言沟通提供便利。智能助手:LLM可以作为智能助手的底层模型,实现智能问答、智能推荐等功能。创作生成:LLM可以生成高质量的文本,包括大型语言模型(LLM,LargeLanguageModel)是一种基于深度学习技术的语言处理模型,其核心是通过对大量语料库的学习,来理解和生成自然语言文本。LLM被广泛应用于自然语言处理、语音识别,LLM可以掌握丰富的语言知识和信息。深度学习技术:LLM采用深度学习技术,通过多层的神经网络结构,对语言文本进行编码和解码,实现自然语言的理解和生成。自回归和预训练:LLM通常采用自回归模型和预训练方法。自回归模型使得LLM可以逐词生成文本,而预训练方法则通过对大量无监督数据进行训练,使得LLM可以更好地理解和生成自然语言文本。生成高质量文本:由于LLM学习了大量的语言知识和信息,因此可以生成高质量小说、新闻、广告等。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型

行业资讯
大语言模型是什么意思?
机器翻译、文本摘要、问答系统等。能够帮助人们解决复杂的语言问题,提供相关的信息和见解,甚至可以进行对话交流。大语言模型的基本原理是通过深度学习技术,通过多层神经网络去建模语言的统计规律和潜在语义信息。大语言大语言模型是什么意思?大语言模型是通过深度学习技术,在大规模文本语料库上训练而成的人工智能模型。这些模型具备对自然语言进行理解、生成和处理的能力,并能够在各种任务中表现出较高的水平。大语言模型可以理解人类的自然语言输入,并根据输入内容生成语义上相关的输出。通过学习大量的文本数据,大语言模型可以获得对语言结构、语法、语义等方面的深入理解。大语言模型在各类自然语言处理任务中都可以发挥作用,比如模型在训练过程中会对大量的文本数据进行学习和抽象,从而可以生成具有逻辑和连贯性的语言输出。大语言模型需要收集和整理大规模的数据集来进行训练,以保证模型能够有较好的泛化能力。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用

行业资讯
大语言模型
大语言模型是一种特殊类型的大模型,主要专注于自然语言处理任务,能够对自然语言文本进行生成、理解、翻译等多种操作,通过学习大量的文本数据来掌握语言的语法、语义和语用等方面的知识,并能够根据输入的文本生成连贯、有意义的输出。大模型特点语言理解能力强:能够理解自然语言文本的含义、上下文关系和语义逻辑,从而准确地回答各种问题、进行文本摘要、阅读理解等任务。文本生成能力强:可以根据给定的主题、语境或提示能力强:能够在未见过的文本数据和任务上表现出较好的性能,通过少量的示例或指令就能快速适应新的任务和领域。大模型应用场景内容创作:帮助作家、编辑等创作各种类型的文本内容,如撰写新闻报道、小说、文案等,提高生成各种类型的文本,如文章、故事、对话、代码等,生成的文本在语法和语义上具有较高的质量和连贯性。多语言支持:经过多语言语料的训练后,能够处理多种语言的文本,实现跨语言的文本生成、翻译和理解等功能。泛化

行业资讯
大模型知识库
大模型知识库是一种基于大规模预训练语言模型构建的新型知识库系统,它将大模型的强大语言理解和生成能力与知识库的知识储备和管理功能相结合,为用户提供更智能、高效和便捷的知识服务。以下是具体介绍:技术原理与架构核心引擎:以大规模预训练语言模型,利用其对自然语言的理解和生成能力来处理用户的查询和提供答案。知识存储:采用非结构化文本数据的形式,通过自然语言处理技术将知识转化为模型可以理解的格式,能够容纳信息,生成自然语言回答。与传统知识库的区别知识表示与存储:传统知识库主要以结构化数据形式存储知识,如实体、属性、关系等;而大模型知识库采用非结构化文本数据,能处理更广泛的知识形式,如文本、图像、音频等更广泛、更丰富的信息,包括文本、图像、音频等多种形式。检索与生成:借助深度学习技术和自然语言处理技术,实现对用户查询意图的自动识别和解析,将用户的自然语言查询转化为模型可理解的输入,并从知识库中检索相关。查询与检索:传统知识库依赖精确匹配或基于规则的语义分析检索信息,用户需准确表达查询意图并使用特定查询语句或关键词;大模型知识库则可自动识别和解析用户的自然语言查询意图,无需考虑特定语法或关键词
猜你喜欢

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...