电网 数据中台

数据
星环数据解决方案聚合跨域数据,对数据进行清洗、转换、整合,实现数据标准化、集成化、标签化,沉淀共性数据服务能力,以快速响应业务需求,支撑数据融通共享、分析挖掘和数据运营,创造业务价值。

电网 数据中台 更多内容

行业资讯
电网数据治理
电网数据治理是对电网企业在生产、运营、管理等过程产生的海量数据进行管理和优化的过程,旨在提高数据质量,保障数据安全,提升数据价值。治理背景和目标背景:随着智能电网建设的推进和电力物联网的发展,电网数据量呈爆发式增长,数据来源广泛且类型复杂,包括设备运行数据、电力交易数据、用户用电数据等。目标:通过数据治理,实现数据的标准化、规范化、一致化,提高数据的准确性、完整性和及时性,为电网的安全稳定运行、高效运营管理和智能化决策提供有力支撑。治理难点数据来源与类型复杂:电网数据涵盖了从发电、输电、变电、配电到用电的各个环节,既有结构化数据如设备参数、电量计量数据,也有大量非结构化数据如设备巡检图像、视频等,整合难度大。数据质量问题突出:由于数据采集设备故障、通信干扰、人为录入错误等因素,导致数据存在缺失、错误、重复等质量问题,影响数据分析和应用的可靠性。数据安全风险高:电网数据涉及国家能源安全和用户隐私,一旦泄露或被篡改,将可能造成严重的安全事故和社会影响,因此数据安全防护要求高。业务系统集成困难:电网企业存在多个不同时期建设的业务系统,如EMS(能量管理系统)、DMS(配电管理系统
电网数字化转型的核心是智能化运行系统。智能化运行系统是一种基于智能化技术的电力系统运营管理平台,可以对电力系统进行全面监测、智能分析和优化调度。利用云计算、大数据、人工智能等技术手段,实现了对电网运行助力电网数字化转型星环科技为企业进行数字化转型提供数据全生命周期的处理工具,包括大数据平台、分布式数据库、数据开发和智能分析工具、以及容器化的资源管理平台。为企业数字化转型提供“底座”或者“引擎”。星环随着信息技术的发展,电网数字化转型正逐渐成为电力行业的趋势。数字化转型的目的是利用现代化的技术手实现电网的智能化、自动化和高效化,提高网的运行效率和可靠性,降低运营成本,促进电力行业的可持续发展、设备状态、能源流动等各个方面的实时监测和可视化管理。智能化运行系统具有实时性、精准性、智能性、可靠性和安全性等特点,可以极大地提高电网运行效率和可靠性,提高能利用率和用户满意度。电网数字化转型还包括基础设施数字化、业务数字化和服务数字化等方面。基础设施数字化主要包括电网设备和工程的数字化管理,实现电网信息化和管理的全面覆盖。业务数字化主要包括电力市场、能源交易、电网规划、设备运维等业务的数字化管理
深度剖析业务数据、AI:数字化转型的关键引擎在数字化转型的浪潮,越来越多的企业意识到,要想在激烈的市场竞争脱颖而出,仅靠传统的业务模式和技术架构远远不够。业务数据、AI商平台、线下门店以及移动端应用都能协同运作,为消费者提供无缝的购物体验。二、数据:企业的数据“智慧大脑”(一)概念与定义数据是将企业内外部的多源数据进行采集、整合、清洗、存储,并提供数据分析、挖掘和应用的平台。它打破了数据孤岛,让数据在企业内部自由流通,为企业决策提供有力的数据支持。比如,一家制造业企业的数据,整合了生产数据、销售数据、供应链数据等,通过对这些数据的深度分析,企业可以精准营销和客户服务。数据价值挖掘:运用大数据分析技术,从海量数据挖掘出有价值的信息,为企业提供决策依据,如预测市场趋势、发现潜在客户等。(三)典型应用场景金融机构利用数据进行风险管理。通过整合客户的信用数据、交易数据以及外部的市场数据数据可以建立风险评估模型,实时监控客户的信用风险,为信贷审批、风险预警等提供数据支持,有效降低金融风险。三、AI:企业的“智能助手”(一)概念与定义AI
业务数据和技术是企业数字化转型的关键概念,它们各自承担着不同的职责和功能。以下是业务数据和技术的定义和区别:定义与功能差异数据:定义:数据主要聚焦于数据的整合资产。功能:数据整合与资产化:整合分散的数据,进行清洗、转换等处理,将数据转化为资产。数据服务提供:以服务的形式向业务、前台应用等提供数据。比如,提供用户画像数据查询服务,方便业务系统获取用户的偏好、消费习惯等信息用于精准营销。数据洞察与挖掘:利用数据挖掘、机器学习等技术,从数据发现潜在价值。业务:定义:业务是企业业务能力的共享平台,是对企业核心业务流程通用的业务能力进行抽象、整合。技术标准化与治理:推动企业内技术标准化,规定技术组件的使用规范、接口标准等。相互关系与协作方式数据与业务数据供给关系:数据为业务提供数据支持。业务的业务组件在运行过程需要数据来驱动,如订单管理组件需要用户数据、商品数据等,这些数据数据提供。业务反馈优化:业务的业务运行数据反馈给数据,用于数据的优化和更新。协同创新:两者协同助力业务创新。例如,在开发新的营销业务
业务,数据和AI是什么?业务:是公司业务的集中化管理平台,通过集成各个业务系统和提供标准化的业务模块服务,帮助公司提高业务协同能力和效率。数据:是企业数据的集中化管理平台,通过统一数据的存储、管理、分析和应用,提升数据的价值和利用率,支持业务决策和创新。AI:是企业人工智能技术和应用的集中化管理平台,通过整合各类人工智能算法、工具和平台,提供一站式的开发、测试、应用和维护服务,促进业的数字化转型和升级。业务是以集成和协调不同的部门、业务系统为核心,侧重于业务处理流程的统一、框架的分层和业务模型的标准化。数据则是以数据治理、数据仓库、数据标准化、数据服务为键点,侧重于数据资产的管理、共享,信息化系统的高度整合和数据分析服务的快速响应。AI是在数据的基础上,采用人工智能算法和技术来提供智能决策、预测、优化等服务,包括AI开发平台、算法模型库、数据服务和智能应用等。业务,数据,AI的区别业务解决的是业务系统复杂性和运营效率低下的问题,数据解决的是数据孤立、分散、标准化和共享等数据管理问题,AI则是为满足企业的数据智能化应用
数据技术业务:企业数字化转型的三驾马车在数字化转型浪潮,企业纷纷寻求更高效、更智能的运营方式。数据、技术和业务作为三大核心支撑平台,正在重塑企业的IT架构和业务模式。这三大各司其职又相互协作,共同推动企业向数字化、智能化方向迈进。数据:企业智慧的核心引擎数据是企业数据资产的管理中枢,它解决了传统企业数据孤岛的问题,将分散在各个系统数据统一汇聚、治理和标准化。通过建立数据,企业能够实现数据的"一次采集、多处使用",大大提高了数据利用效率。数据的核心功能包括数据采集、存储、计算、治理和服务。它不仅仅是技术平台,更是一种数据运营理念。良好的数据能够支持实时数据分析,为业务决策提供即时依据;能够构建统一的数据资产目录,让业务人员也能轻松找到所需数据;能够提供标准化的数据服务接口,支持各类应用快速调用数据数据的价值在于将数据从成本中心转变为价值中心。通过数据,企业可以挖掘数据潜力,实现精准营销、智能风控、供应链优化等场景,真正让数据成为生产力。技术:数字化转型的基石技术是企业技术能力的沉淀和共享平台,它封装了各类通用技术
发现电数据价值,提升电网发展运营水平,提高对社会经济的服务水平。基于这样的情况,国家电网上海市电力公司筹备建设电力大数据实验平台。问题与需求1、数据的统一储存在电力系统不断的生产、运行、管理过程,会项目背景国内外高度关注大数据技术发展,大数据已上升为我国的国家战略。随着智能电网的深化建设,电力系统生产、运行、销售、管理等过程产生出大量数据,迫切需要利用大数据技术,高效挖掘多源异构电力数据,深度建成结果数据模型一百八十多张。实现数据数据缓存区到原始库。通过建立基础数据模型,如用户台账、区台账、日冻结电量等,为上层数据分析提供数据支撑,终建立可视化信息模型,使可视化得以高效的展示和交互。2、数据交换及共享机制实现完成了上海浦东新区电网数据、用户数据和社会环境经济数据等多源异构数据的接入,结构化数据按oracle格式存储至缓存区,非结构化数据如地理拓扑信息,按xml/svg文件格式存储产生非常大量的数据,每年都有30%的增长。这些数据包含结构化数据,非结构化数据。传统的结构化数据有26.7T,而图形数据、音频数据、以及文档数据合计有300T之多。如何将不同类型的数据统一存储,是非
来自: 官网 / 案例
数据数据治理和数据资产管理的核心平台,数据主要任务是收集、存储、整理、清洗、计算、分析和共享数据,为企业各个部门和业务应用提供可靠、高效、安全的数据支持。数据目标是建立一个统一的数据架构和数据模型,提供集成、数据加工、数据存储、数据治理和数据服务等功能帮助企业更好地理解和利用数据,支持企业决策和创新。业务以业务为中心,将企业内部各个业务环节进行解构和模块化,形成独立的业务模块,并通过统一的技术平台和数据等基础设施进行协同和集成,提供给企业内部和外部的各种需求方使用。业务的目标是提供标准化、范化和可复用的业务功能和服务,实现业务的快速迭代和效率提升。数据和业务的区别主要体现在以下几个方面:定位不同:数据主要关注数据的收集、处理和管理,提供数据支持和数据服务;业务主要关注业务功能和业务流程的模块化和标准化,提供务支持和业务服务。功能不同:数据提供数据集成、数据加工、数据存储、数据治理等数据管理功能;业务提供业务模块化、业务流程设计、业务协同等业务管理功能。目标不同:数据的目标是建立统一的数据架构和数据模型,提供可靠、高效、安全的数据
数据与业务的区别在数字化转型的浪潮数据和业务作为两大核心架构概念,常常被企业同时提及,却又容易混淆。这两者虽然都带有""二字,但它们的定位、功能和应用场景有着本质区别。本文将系统性地解析数据与业务的不同之处,帮助读者更好地理解这两种架构模式。概念定位差异数据的核心定位是数据的汇聚、治理和价值挖掘。它像企业的"数据大脑",负责将分散在各个业务系统数据进行统一采集、清洗、存储和分析,形成可供各业务部门使用的数据资产和服务。数据关注的是如何让数据流动起来,打破数据孤岛,实现数据的标准化和资产化。业务的定位则更侧重于业务流程和功能的复用。它是企业的"业务骨架",通过将各业务线共用的核心能力(如用户管理、订单处理、支付结算等)抽象出来,形成可共享的业务组件。业务的目标是避免重复建设,提高业务敏捷性,支持前台业务的快速创新和迭代。功能组成对比数据模型;数据服务将数据能力API化;数据治理确保数据质量和安全。业务的功能组成则围绕业务能力展开,常见模块包括用户中心、商品中心、订单中心、营销中心、结算中心等。每个中心都封装了该业务领域的完整能力
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...