国产大型向量数据库
Transwarp Hippo是一款企业级云原生分布式向量数据库,支持存储,索引以及管理海量的向量式数据集,能够高效的解决向量相似度检索以及高密度向量聚类等问题。Hippo具备高可用、高性能、易拓展等特点,支持多种向量搜索索引,支持数据分区分片、数据持久化、增量数据摄取、向量标量字段过滤混合查询等功能,能够很好的满足企业针对海量向量数据的高实时性检索等场景。
国产大型向量数据库 更多内容

行业资讯
国产向量数据库
国产向量数据库:人工智能时代的“数据引擎”向量数据库,到底是什么?传统数据库,就像一个超级规整的电子表格,数据都以表格形式存储,一行行、一列列,每个字段都有明确的数据类型,比如姓名是字符串,年龄是范围查进行精确匹配;向量数据库则专注于处理AI应用产生的非结构化数据,采用近似查进行模糊匹配,输出的是概率上相对最符合条件的答案,而非精确的标准答案。国产向量数据库的优势与特色(一)技术性能优势国产向量数据库在技术性能方面表现卓越。在存储规模上,国产向量数据库最高支持千亿级向量规模,从最初支持的十亿向量规模到如今的千亿规模,实现了跨越式发展,并且通过不断优化索引的压缩算法,让相同的内存可以存储5-10倍的数据,大大提高了存储空间的利用率。查询速度也是国产向量数据库的一大亮点,许多国产向量数据库都能将查询延迟控制在毫秒级。(二)贴合本土需求国产向量数据库在贴合本土需求方面有着独特的优势。在业务特点上,国内企业的业务场景丰富多样,例如电商行业的商品推荐,不仅需要根据用户的浏览历史、购买记录等数据进行精准推荐,还需要考虑到国内消费者独特的消费习惯和节日促销等特殊场景。国产向量数据库能够深入

行业资讯
国产向量数据库
,为向量构建专门的数据库处理系统。TranswarpHippo是星环科技自主可控的一款国产企业级云原生分布式向量数据库,支持存储,索引以及管理来自深度神经网络或者各类机器学习模型所生成的海量向量数据伴随着企业对海量非结构化数据管理的需求的不断加深,以及深度学习在工业界的广泛落地,向量数据在实际应用场景下的数据量级开始直线增加。想要高效处理这些海量的向量数据,就需要更细分、更专业的数据基础设施,能够高效的解决向量相似度检索以及高密度向量聚类等问题。TranswarpHippo具备高可用,高性能,易拓展等特点,支持多种向量搜索索引,支持数据分区分片,数据持久化,增量数据摄取,向量标量字段过滤混合查询等功能,能够很好的满足企业针对海量向量数据的高实时性查询、检索、召回等场景。同时,TranswarpHippo也可以高效的服务于大模型,有效地解决大模型在知识时效性低、输入能力有限、准确度低等问题并行检索能力;同时支持多类索引,满足不同业务场景;支持检索速度和内存使用的特定优化,支持寄存器级算法优化。多模型联合分析:基于多模型统一技术架构,向量数据与关系型数据、图数据、时序数据等多种模型数据进行

行业资讯
向量数据库
搜索大型非结构化数据集。这些向量是通过对原始数据应用某种转换或嵌入函数来生成的。嵌入函数可以基于各种方法,如机器学习模型、词嵌入、特征提取算法等。在向量数据库中搜索使用相似性指标和索引。相似性指标向量数据库是一种新型的数据库架构,它使用向量表示法来存储和检索数据。这些向量是由深度学习模型生成的,可以简化处理多结构化内容的方式。与传统的关系型数据库不同,向量数据库设计为多语言和多模态,可以在同一向量空间内处理任何形式的自然语言和非结构化数据,如图像、视频、音频、文本等。这意味着,无论数据的形式如何,都可以使用相同的向量表示法进行处理。向量数据库通过处理深度学习模型的嵌入式向量来存储、索引和定义了数据库如何评估两个向量之间的距离和差值。常用的相似性度量是欧几里得距离,也称为L2范数。此外,索引也在加快查询速度和处理并发性方面发挥着关键作用。与传统的基于文本的数据库相比,向量数据库的主要优点是允许根据向量距离或相似性快速准确地搜索和检索数据。这意味着,用户可以使用向量数据库根据语义或上下文含义查找相似或相关的数据,而不是使用基于完全匹配或预定义条件查询数据库的传统方法。这种基于相似性的搜索方法可以更好地处理语义层面的查询,而不仅仅是基于关键词的匹配。

行业资讯
为什么说向量数据库是大模型的“海马体”?
搜索相似性和处理复杂数据类型(如图像、音视频、自然语言等)方面更为高效。从这个角度来看,向量数据库代表了数据存储和检索的全新范式。随着大型模型的崛起,向量数据库的优势得到了充分发挥,甚至有人将其视为AIGC(人工智能生成内容)成功的关键因素。为什么说向量数据库是大型模型的“海马体”?海马体是大脑中负责记忆和学习的部分,而向量数据库在大型模型中的作用与之类似。大型模型需要大量的实时和私有数据来不断学习和改进,而向量数据库可以通过存储新的信息或企业数据来弥补这一缺陷,让大型模型突破时间和空间上的限制,加速其在各种行业场景的落地。同时,通过向量数据的本地存储,还可以帮助解决企业界担忧的大型模型泄露隐私的问题。因此,向量数据库在大型模型中的应用具有重要意义,不仅有助于提高模型的性能,还可以保护数据隐私,为企业提供更多的灵活性和自主性。星环分布式向量数据库-TranswarpHippo星环分布式向量在探讨这个问题之前,先需要理解向量数据库与传统的数据库的区别。传统数据库是建立在结构化数据的基础上的,而向量数据库则以数学向量形式在高维空间中存储数据并对其进行索引。这种向量化方式使得向量数据库在

行业资讯
什么是向量搜索数据库?
。通过应用向量检索算法,量搜索数据库可以快速检索和匹配目标向量,不仅可以于向量相似度检索,还可以支持分类、聚类和推荐等应用场景。现在大型机构和企业广泛应用向量搜索数据库来挖掘和应用对企业有价值的数据信息向量搜索数据库是一种以向量为基础存储单元,具备高效检索向量能力的数据库。向量搜索数据库大多数适用于海量高维向量数据的存储和检索,对于传统关系型数据库无法胜任或效率较低的高维向量场景有较好的解决效果,比如金融行业的推荐和欺诈检测,社交网络领域的知识图谱与舆情应用等等。星环科技分布式向量数据库TranswarpHippo星环科技分布式向量数据库TranswarpHippo作为一款企业级云原生分布式向量数据库,支持存储、索引以及管理海量的向量式数据集,提供向量相似度检索、高密度向量聚类等能力,有效地解决了大模型在知识时效性低、输入能力有限、准确度低等问题,让大模型更高效率地存储和读取知识库,降低训练和推理成本,激发更多的AI应用场景。在赋予大模型拥有“长期记忆”的同时,还可以协助企业解决目前担忧的大模型数据隐私泄露问题。与开源的向量数据库不同,星环分布式向量数据库Hippo具备高可用、高性能

行业资讯
向量数据库突然火热的原因
大型语言模型(LLM)的进一步发展需要实现更相关和更连贯的文本生成,而向量数据库的存储机制可以为此提供支持。向量数据库是一种高效的数据存储和检索方式,特别适合处理多维度的数据。向量数据库在自然语言处理(NLP)、计算机视觉(CV)、推荐系统(RS)等领域应用广泛。在这些领域中,向量数据库用于处理和存储大量的数据,并实现高效的搜索和匹配功能。向量数据库将数据转化为高维向量,每个向量由多个维度组成。这些维度可以是文本、图像、音频、视频或其他类型数据的数学表示。向量的维度数量可以根据数据的复杂性和粒度进行调整,一般来说,维度越高,数据的表示越精确。向量数据库中的数据是通过将原始数据应用特定的转换或嵌入函数生成的。这些嵌入函数可以基于多种方法,包括机器学习模型、词嵌入、特征提取算法等。这些方法可以将原始数据转化为高维向量,这些向量可以在向量数据库中进行存储和检索。向量数据库的大优点是它能够通过计算向量间的距离或相似度来进行数据检索。这种机制使得用户可以基于语义或上下文含义查找相似或相关的数据,而不仅仅是基于关键词或其他形式的精确匹配。此外,向量数据库还可以用于执行相似性搜索和检索。例如,我们

行业资讯
数据库国产化替代
数据库作为提供数据存储与处理能力的基础软件,是信息系统的基础、信息安全的基石,因此,数据库自主可控和国产化替代已经刻不容缓。兼容性是国产化替代关键,自研数据库更具潜力Oracle数据库发展较早,在国内市场内占领了一定先机,企业经过信息化的长期积累和革新,基于Oracle开发了大量的系统业务。为了能够适配新的国产数据库产品,必须对应用代码进行大量修改,各数据表的数据类型、函数、语法规则需要进行系统、全面的改造,这就要求新的国产数据库对原有数据库能够有很好的兼容性支持,降低迁移的代码改造成本。Oracle经过多年的发展,在SQL语言、性能、实例形态、容灾方案等方面有很多积累扩展。若要实现Oracle数据库的国产化替代,除了要能够提供在性能、容灾能力、安全能力等方面全方位提供对等的能力,首先要解决的就是如何兼容Oracle的大量SQL方言,尤其是Oracle的PL/SQL这一独特的广受欢迎的自主研发的国产分布式交易型数据库,提供完整的关系型数据库的能力,高度兼容MySQL和Oracle,可低成本实现数据库国产化的替代和迁移,具备可扩展、高并发、高可用、数据灾备等特性,满足企业关键业务处理

行业资讯
国产分布式数据库
国产分布式数据库星环分布式向量数据库-TranswarpHippoTranswarpHippo是一款企业级云原生分布式向量数据库,支持存储,索引以及管理海量的向量式数据集,能够高效的解决向量相似度Oracle和MySQL、高可用、高性能、集中式与分布式一体化等特性,为企业核心业务系统提供完备的国产化数据库能力支撑。基于自研内存数据库引擎,KunDB单机TPC-C达到188万tpmC,同时性能扩展比超90%,可实现Oralce和MySQL的国产化替代,满足企业关键业务处理、高并发查询、分布式改造、交易分析混合的数据中台等复杂场景,在金融、政务、能源、医疗、交通、教育等多个行业应用,为用户提供高性能、稳定可靠、经济实用的国产化数据库产品。数据的高实时性检索等场景。星环分布式图数据库-TranswarpStellarDBTranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和海量数据3D图展示能力。StellarDB帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。星环分布式时空数据库-TranswarpSpactureTranswarpSpacture是

行业资讯
Oracle数据库国产化替代
数据库的国产化替代是IT系统国产化“顽固”的堡垒!对数据库领域应用广、市场份额大的Oracle数据库的替代更是一个攻坚战。所幸的是,不管是在传统的关系型数据库领域,还是新型的非关系型数据库领域,面对用户不断增加的新需求,国产数据库表现出更多的自信,开始慢慢替代不可一世的Oracle数据库。国产数据库的依靠自身的技术实力,化解了Oracle数据库替代中的一道道难关,既以低成本实现数据库国产化的替代和迁移,又为用户提供高性能、稳定可靠、经济实用、自主可控的国产化数据库产品。星环科技自主研发的国产分布式交易型数据库KunDB,在替代国外数据库方面,以高度兼容MySQL和Oracle,提供完整的关系型数据库的能力和高性能,以及国产化生态,在节省大量人力成本的同时,实现快速、安全地替换Oracle的目标。破解Oracle方言兼容性难题Oracle数据库发展较早,一方面,企业基于Oracle开发,但没有体系化的兼容Oracle,尤其是PL/SQL方面。要实现Oracle数据库的国产化替代,首先要解决的就是兼容Oracle的大量SQL方言。星环KunDB对Oracle语法各个方面高度兼容,成为
猜你喜欢

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...