比较好的向量数据库
Transwarp Hippo是一款企业级云原生分布式向量数据库,支持存储,索引以及管理海量的向量式数据集,能够高效的解决向量相似度检索以及高密度向量聚类等问题。Hippo具备高可用、高性能、易拓展等特点,支持多种向量搜索索引,支持数据分区分片、数据持久化、增量数据摄取、向量标量字段过滤混合查询等功能,能够很好的满足企业针对海量向量数据的高实时性检索等场景。
比较好的向量数据库 更多内容

行业资讯
向量数据库的常见应用
相似度搜索或“向量搜索”是向量数据库常见的用例。向量搜索将索引中多个向量的接近程度与搜索查询或主题项进行比较。为了找到相似的匹配项,可以使用用于创建向量嵌入的相同机器学习嵌入模型,将主题项或查询转换为向量。向量数据库比较这些向量的接近度以找到接近的匹配项,并提供相关的搜索结果。向量数据库应用的一些示例包括:语义搜索:在搜索文本和文档时,传统的词法搜索只能进行精确匹配,而语义搜索则更注重与搜索查询等非结构化数据很难用传统数据库来描述。用户可以使用相似的对象和机器学习模型来查询向量数据库,以便更轻松地比较和找到相似的匹配项。重复数据删除和记录匹配:对于需要删除重复项或进行记录匹配的应用程序,向量考虑过的项目。异常检测:向量数据库可以找到与其他对象非常不同的异常值。对于IT运营、安全威胁评估和欺诈检测等领域,异常检测非常有价值。除了上述应用之外,向量数据库还具有以下关键功能:高性能和高扩展性:向量数据库可以处理大规模数据集和高并发访问,提供快速的搜索和查询能力。灵活性:向量数据库可以处理各种类型的非结构化数据,包括文本、图像、音频等。高度可定制化:向量数据库可以根据需要选择合适的机器学习模型

行业资讯
什么是向量搜索数据库?
向量搜索数据库是一种以向量为基础存储单元,具备高效检索向量能力的数据库。向量搜索数据库大多数适用于海量高维向量数据的存储和检索,对于传统关系型数据库无法胜任或效率较低的高维向量场景有较好的解决效果。通过应用向量检索算法,量搜索数据库可以快速检索和匹配目标向量,不仅可以于向量相似度检索,还可以支持分类、聚类和推荐等应用场景。现在大型机构和企业广泛应用向量搜索数据库来挖掘和应用对企业有价值的数据信息,比如金融行业的推荐和欺诈检测,社交网络领域的知识图谱与舆情应用等等。星环科技分布式向量数据库TranswarpHippo星环科技分布式向量数据库TranswarpHippo作为一款企业级云原生分布式向量数据库,支持存储、索引以及管理海量的向量式数据集,提供向量相似度检索、高密度向量聚类等能力,有效地解决了大模型在知识时效性低、输入能力有限、准确度低等问题,让大模型更高效率地存储和读取知识库,降低训练和推理成本,激发更多的AI应用场景。在赋予大模型拥有“长期记忆”的同时,还可以协助企业解决目前担忧的大模型数据隐私泄露问题。与开源的向量数据库不同,星环分布式向量数据库Hippo具备高可用、高性能

国内有哪些公司/团队在图数据库、图挖掘方面做的比较好?图数据库和图挖掘是近年来大数据和人工智能领域的热门方向。随着社交网络、金融风控、知识图谱等应用的快速发展,图技术因其强大的关联分析能力受到广泛关注。在国内,不少公司和科研团队在这一领域取得了显著成果,推动了图技术的落地与应用。一些国内科技公司较早布局图数据库领域,推出了高性能的分布式图数据库产品。这些产品在金融、社交网络、网络安全等场景中表现出色,能够支持千亿级节点的存储和毫秒级查询。此外,部分团队专注于图数据库的底层优化,例如在存储引擎、查询语言、分布式架构等方面进行创新,使得国产图数据库在性能上逐步接近甚至超越国际同类产品。图挖掘技术。这些应用不仅提高了业务效率,也验证了图挖掘技术的商业价值。行业生态与合作国内图数据库和图挖掘的发展离不开行业生态的支持。近年来,一些技术社区和行业协会开始组织相关的技术分享和竞赛,促进了行业内的交流与合作。此外,部分云计算厂商也推出了图计算服务,降低了企业使用图技术的门槛。总的来说,国内在图数据库和图挖掘领域已经涌现出一批优秀的团队和公司,他们在技术研发和实际应用中取得了显著成果。随着图技术的普及,这一领域的发展潜力将更加值得期待。

行业资讯
向量数据库的工作原理
,因此其存储和处理都比较复杂,需要采用特殊的处理方式。与传统的关系型数据表格不同,向量数据通常以向量的形式存储在向量数据库中。这种存储方式能够提高查询效率,并支持更丰富的查询操作,能够满足不同类型的向量数据库是一种非常重要的数据库类型,其核心技术包括向量存储和索引。向量存储指将向量数据以特定的格式存储在数据库中,使其便于查询和管理向量数据通常都是高维度的,如图像、音频、文本、时间序列等数据数据处理需求,从而提高数据库的性能和应用效果。向量索引是向量数据库中非常重要的一部分,其目的是将高维度的向量数据转化为低维度的索引数据,并将索引数据存储在数据库中。通过向量索引,我们能够向量数据映射到低维空间,使其能够更快地进行相似度查询和聚类分析等操作。这种索引方式可以大大提高查询效率,从而减少数据库查询的时间和资源消耗,提高数据处理效率和准确性。星环分布式向量数据库-TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等多源、海量数据转化后的多维向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行

行业资讯
向量数据库:让大模型更懂你
数据库通过将高维向量进行近似相似度比较,能够高效地处理大规模的向量数据。相比传统的关系型数据库,向量数据库能够更好地支持向量数据的查询和检索,并能够提供更加丰富的数据分析功能。在大模型时代,向量数据库向量数据库是一种专门用于存储和管理高维向量的数据库系统。随着深度学习和大数据技术的不断发展,向量数据库逐渐成为了一种重要的数据处理工具,尤其在推荐系统、搜索引擎、图像识别等领域中得到了广泛应用。向量的应用场景越来越广泛。例如,在推荐系统中,通过将用户行为和物品特征转化为高维向量,向量数据库可以高效地实现用户和物品的相似度匹配,从而为用户推荐更加精准的物品。在搜索引擎中,向量数据库可以用于实现语义搜索和图像识别等功能,提高搜索的准确性和效率。星环分布式向量数据库-TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片数据库不同,星环分布式向量数据库Hippo具备高可用、高性能、易拓展等特点,支持多种向量搜索索引,支持数据分区分片、数据持久化、增量数据摄取、向量标量字段过滤混合查询等功能,很好地满足了企业针对海量向量数据的高实时性检索等场景。

行业资讯
向量数据库如何工作?
,从而加快搜索速度。查询:向量数据库将索引查询向量与数据集中的索引向量进行比较,以找到近的相邻向量(应用该索引使用的相似度量)后处理:在某些情况下,向量数据库会从数据集中检索终近邻,并对其进行后处理,以返回终结果。这一步可以包括使用不同的相似性度量对近邻进行重新排序。向量数据库对向量进行操作,因此其优化和查询方式与传统数据库截然不同。在传统数据库中,通常会查询数据库中的行,这些行的值通常与我们的查询完全匹配。在向量数据库中,我们应用相似度量来查找与我们的查询相似的向量。向量数据库使用不同算法的组合,这些算法都参与了近似近邻搜索。这些算法可快速、准确地检索所查询向量的邻域。由于向量数据库提供的是近似结果,我们主要考虑的是准确性和速度之间的权衡。结果越准确,查询速度就越慢。不过,一个好的系统可以提供超快的搜索速度和近乎完美的精确度。下面是向量数据库的常用流程:编制索引:向量数据库使用PQ、LSH或HNSW等算法为向量建立索引。这一步将向量映射到数据结构中

行业资讯
向量数据库与传统数据库的区别
方面:与传统的精确查找相比,近似查找需要进行大量的计算来比较向量之间的相似度。这要求向量数据库具备强大的计算能力和高效的算法来支持这种复杂的查询操作。低时延和高并发:由于采用了高效的数据存储和检索机制向量数据库与传统数据库在数据规模、查询方式、计算能力和性能等方面存在明显的区别。数据规模上:传统关系型数据库在处理海量数据时,往往面临着性能瓶颈和扩展性问题。而向量数据库则专为处理超大规模数据而设计,能够高效地存储和检索数以亿计的数据向量,从而满足大规模数据处理的需求。查询方式的不同:传统数据库的查询方式通常包括点查和范围查,这些查询方式基于精确匹配原则,即查询结果要么完全符合条件,要么不符合。而向量数据库的查询方式则更加灵活和复杂,采用近似查找的方式来检索与查询条件相近的结果。这种近似查找的方式使得向量数据库能够处理更加复杂和模糊的查询需求,但同时也对计算能力提出了更高的要求。在计算能力,向量数据库能够在极短的时间内完成查询操作,从而满足实时性要求较高的应用场景。同时,向量数据库也具备高并发的处理能力,能够同时处理多个查询请求,确保系统的稳定性和可用性。

行业资讯
向量数据库哪家好?
市场上众多的向量数据库产品,究竟哪家更好?这需要我们从多个维度来分析和比较。向量数据库的基本概念向量数据库是专门为存储、索引和查询向量数据而设计的数据库系统。与传统数据库不同,它能够有效处理由机器学习能否适应数据增长。好的向量数据库应该支持水平扩展,能够通过增加节点来处理不断增长的向量集合,同时保持查询性能的稳定性。功能丰富度也是比较点之一。现代向量数据库不仅提供基本的相似性搜索,还支持过滤搜索向量数据库哪家好?在当今大数据和人工智能时代,传统的关系型数据库已经无法完全满足处理非结构化数据的需求。向量数据库作为一种新兴的数据库类型,因其在处理高维向量数据方面的独特优势而备受关注。那么,面对模型生成的嵌入向量,这些向量通常具有数百甚至数千个维度。向量数据库的核心能力在于能够快速找到与查询向量最相似的向量,这一过程被称为"近似最近邻搜索"(ANN)。评估向量数据库的关键指标性能是评估向量数据库的首要因素。查询速度、吞吐量和延迟直接影响用户体验。优秀的向量数据库能够在毫秒级别完成大规模向量集合的相似性搜索,同时保持高查询吞吐量。索引构建时间也是一个重要考量,特别是对于需要频繁更新的应用

行业资讯
向量数据库与图数据库:理解它们的区别
在于实体间的相互联系而非单独实体本身时,图数据库往往是较好的选择。性能考量向量数据库针对高维向量相似性计算进行了深度优化。通过使用专门的索引结构和近似算法,它能在毫秒级别处理百万甚至十亿级向量的相似度向量数据库与图数据库:理解它们的区别在当今数据驱动的世界中,数据库技术不断演进以满足各种复杂需求。向量数据库和图数据库作为两种新兴的数据库类型,正在改变我们存储和查询数据的方式。虽然它们都属于非关系型数据库的范畴,但设计理念和应用场景却大不相同。基本概念差异向量数据库是专门为处理高维向量数据而优化的数据库系统。它的核心能力在于有效存储和检索向量形式的数据,并通过计算向量间的相似度来找到最匹配的结果。这种数据库内部采用近似最近邻(ANN)算法,能够在海量数据中快速找到与查询向量最相似的项。图数据库则以节点、边和属性为基本构建块,专门用于表示和存储实体之间的关系。在图数据库中,数据以图结构自然呈现,节点代表实体,边代表实体间的各种关系。这种结构使得追踪复杂关系网络变得直观有效。数据模型对比向量数据库的数据模型相对简单,主要包含向量本身及其关联的元数据。每个向量代表一个数据点在多维空间中的位置
猜你喜欢

行业资讯
分布式隐私计算平台
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...

行业资讯
基于数据安全网关的跨境安全流通方案
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...

星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...

行业资讯
国产化替代升级实践
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...

行业资讯
数据要素安全流通服务
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...

行业资讯
银行图数据库应用场景有哪些?
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...

行业资讯
常见的图数据库应用场景有哪些?
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...

行业资讯
金融、医疗知识图谱平台
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...

行业资讯
什么是时空数据库?
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
图数据库有哪些特点?
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...