llm 大模型语言

行业资讯
LLM 语言模型
语言模型LLM)是指使用大量文本数据训练的深度学习模型,可以生成自然语言文本或理解语言文本的含义。语言模型可以处理多种自然语言任务,如文本分类、问答、对话等。语言模型通常使用规模的语料库自然语言任务,并且生成的文本质量较高。此外,由于语言模型经过了大量的文本数据训练,因此其具有很好的泛化性能,可以适应多种场景和应用。LLM语言模型的应用场景主要集中在自然语言处理、机器翻译、智能进行训练,这些语料库包含了大量的文本数据,涵盖了各种领域和语言风格。通过训练,语言模型可以学习到文本数据的内在特征和规律,从而在各种自然语言处理任务中表现出色。语言模型的优势在于其能够处理复杂的写作、智能客服、智能语音助手、自然语言推理等领域。自然语言处理:LLM可以用于文本生成、情感分析、语言翻译等领域,帮助人们快速生成高质量的文章、简历、报告等。机器翻译:特别是在处理长文本和专业术语时效果更为显著。智能写作助手:可以利用LLM的文本生成能力,帮助人们快速生成高质量的文章、简历、报告等。智能客服机器人:能够帮助用户解决问题和提供相关服务。这类应用可以在电子商务、在线教育、医疗健康等领域得到

llm 大模型语言 更多内容

行业资讯
LLM语言模型
LLM,全称LargeLanguageModel,是一种大型的语言模型,旨在理解和生成自然语言文本,并尝试回答各种自然语言问题、提供有关信息和建议。LLM通过对大量文本数据进行训练,学习了如何理解和生成文本,从而为用户提供准确、高效、有用的服务。LLM的核心是一个深度学习模型,通常采用神经网络架构。这些模型具有强大的学习和预测能力,可以处理各种自然语言任务,如文本分类、翻译、问答、文本生成等很高。其次,LLM可能存在一些偏见和错误,这可能源于训练数据的选择和模型的架构。此外,LLM的理解和生成能力还需要进一步提高,以便更好地应对各种自然语言任务。LLM是一种非常有前途和潜力的技术,它可以为用户提供更加智能、高效、便捷的服务。未来,随着技术的不断发展和进步,LLM的应用和性能也将不断提高和优化。模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发模型。星环科技金融量化领域、超大规模参数量的生成式语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解和生成能力,支持股票、债券、基金、商品等市场事件的全面复盘、总结及演绎推理,以及政策研报的
大型语言模型LLM)是指采用深度学习算法训练巨型自然语言处理模型LLM的特点是能够处理大量的文本数据,从而具有很强的自然语言理解生成能力。LLM可以通过学习规模语料库中的统计规律和模式,从而自然语言处理的效率和准确率,还能够为人工智能领域的发展提供强有力的支持。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式语言模型,融合了舆情、资金、人物、空间、研究员和投资经理的日常工作,帮助企业更好地应对复杂的市场环境和业务需求,持续促进整体行业的降本增效与科技创新。求索具备数据行业需求理解、推理、各类(含多模型)结构化查询语言和OpenCypher代码生成、文本生成、嵌入向量生成、知识推理等能力。借助这一领域模型,企业的业务人员、数据分析人员以及业务管理者只需使用自然语言,就能利用TranswarpSoLar模型获取所需的数据分析、展示和报告,轻松地应对各种复杂的数据分析挑战,并快速获得有价值的数据洞察,为企业的业务增长提供原动力。
大型语言模型(LargeLanguageModel,LLM)是一种通过机器学习技术基于规模语言文本数据训练而来的模型,大型语言模型LLM可以对自然语言进行处理和生成,如文本的自然语言生成、文本的自然语言理解和翻译等。通常情况下,大型语言模型LLM需要使用规模的文本数据进行预训练,以提高模型的性能。在预训练完成后,LLM模型可以继续进行微调,以适应特定的任务场景或应用场景。这种预训练和微调的准确率。星环大型语言模型LLM相关产品为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、模型微调、上架部署到应用编排和方式使得LLM模型能够在不同领和任务中具备相对较好的适应性和泛化能力。LLM的研究和用领域非常广泛,其中包括情感分析、机器翻译、智能问答、阅读理解和信息检索等。以语言理解为例,LLM模型可以对自然语言进行深入的理解和分析,包括词汇、句法和语义等方面。与传统的自然语言处理方法相比,LLM模型可以自主地从海量的文本数据中学习和提取语言的特征,避免了传统方法中需要人工定义特征的缺陷,也提高了处理效率和
行业资讯
模型LLM
大型语言模型LLM,LargeLanguageModel)是一种基于深度学习技术的语言处理模型,其核心是通过对大量语料库的学习,来理解和生成自然语言文本。LLM被广泛应用于自然语言处理、语音识别,LLM可以掌握丰富的语言知识和信息。深度学习技术:LLM采用深度学习技术,通过多层的神经网络结构,对语言文本进行编码和解码,实现自然语言的理解和生成。自回归和预训练:LLM通常采用自回归模型和预训练方法。自回归模型使得LLM可以逐词生成文本,而预训练方法则通过对大量无监督数据进行训练,使得LLM可以更好地理解和生成自然语言文本。生成高质量文本:由于LLM学习了大量的语言知识和信息,因此可以生成高质量识别、关系抽取等。机器翻译:LLM可以高效地进行多语言翻译,为跨语言沟通提供便利。智能助手:LLM可以作为智能助手的底层模型,实现智能问答、智能推荐等功能。创作生成:LLM可以生成高质量的文本,包括一站式工具链,帮助客户从“通用语言模型”训练/微调,得到“满足自身业务特点的领域语言模型”;第二,帮助客户将原型的语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的语言
大型语言模型LLM)是一种基于深度学习技术的语言处理模型,其目的是理解和生成自然语言文本。LLM主要应用于自然语言处理、语音识别、机器翻译等领域。大型语言模型LLM的核心是神经网络,其基本结构是。大型语言模型LLM的训练需要大量的文本数据。通过对大量文本数据进行预处理,将其转化为模型可以处理的格式。然后,使用反向传播算法和梯度下降等优化方法对模型进行训练,使其能够根据输入的文本生成合理的输出。在训练过程中,需要不断地调整模型的参数,以提高其性能。大型语言模型LLM的应用非常广泛,例如在自然语言处理领域中,LLM可以用于文本分类、情感分析、命名实体识别等任务。在机器翻译领域中,LLM可以用于翻译短文本或生成翻译建议。此外,LLM还可以用于智能客服、智能推荐、语音识别等领域。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用语言模型”训练/微调,得到“满足自身业务特点的领域语言模型”;第二,帮助客户将原型的语言模型应用
统计规律的推断能力使得LLM可以在生成文本的过程中更好地控制语气、风格等。大型语言模型(LLM)是一种强大的自然语言处理工具,具有广泛的应用前景。星环科技模型训练工具,帮助企业打造自己的专属模型星大型语言模型(LargeLanguageModel,LLM)是一种基于深度学习技术的强大的自然语言处理工具。是一种模仿人类言能力的人工智能系统,可以根据输入的上下文生成连贯的、语义合理的文本。大型语言模型(LLM)可以用于各种自然语言处理任务,如文本生成、文本摘要、语言翻译。大型语言模型(LLM)的核心是深度学习技术,特别是自然语言处理领域的神经网络模型。通过大规模训练,LLM可以学习到丰富的语言知识和语言规律,并且可以灵活地运用这些知识和规律进行文本生成。与传统的语言模型相比,LLM具有以下优势:LLM的训练数据非常丰富:它可以在互联网上爬取大量的文本数据,并利用这些数据进行训练。这样环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于模型
行业资讯
语言模型
语言模型(LargeLanguageModel,简称LLM)是然语言处理领域的一种重要技术,语言模型可以为人工智能提供更为精准和自然的语言处理能力。LLM的核心思想是利用机器学习算法学习语料库,可以在高效的情况下生成基于人类语言的文本,从而提高机器的语言达和理解能力。语言模型可以用于各种语言处理任务。由于LLM可以生成自然而然的文本,因此它可以用于各种语言处理任务,如问答系统、文本摘要、机器翻译、语音合成等,在这些任务中,LLM可以将大量的语言特征、语法规则、词汇义项等信息嵌到它的内部模型中,然后通过模型概率推断的方式,生成相应的文本结果。语言模型是构建人工智能的重要组成部分规模语料库中的语言模型,并通过对学到的模型进行概率推断来构建对应的文本生成模型语言模型有助于提高机器的语言理解和生成能力。通常来说,人类的语言表达和理解非常灵活和多样化。我们可以使用不同的语言风格、词汇、语法规则和上下文,来产生相应的语言表达效果。但是,对于机器来说,要忠实地表达人类的语言需要消耗大量的计算资源和时间,这是由于语言界面不同,其对应的计算机语言模型也需要相应地不同。LLM通过学习大量的
大型语言模型(LargeLanguageModel,简称LLM)是一种基于深度学习的自然语言处理(NLP)技术,LLM模型通常基于神经网络模型,特别适合处理规模的文本数据,可以发现语言文字中的规律,并根据提示自动生成符合这些规律的内容。LLM模型通常拥有数十亿到数万亿个参数,能够处理各种自然语言处理任务,如自然语言生成、文本分类、文本摘要、机器翻译、语音识别等。LLM模型的应用非常泛,通过预训练和微调的方式,可以用于生成文本,有很强的语言表达能力,能够生成流畅、连贯的句子,并且在许多自然语言处理任务中取得了很好的效果。LLM模型还被广泛应用于机器翻译任务。通过使用规模的双语对齐数据进行预训练,LLM模型可以在源语言和目标语言之间建立起一个中间表示空间,从而实现高质量的翻译。相比传统的基于统计的机器翻译模型LLM模型能够更好地处理长句子、复杂的语法结构和上下文信息,从而可以应用于各种领域,包括医疗、法律、金融等,帮助用户快速获取所需信息。LLM模型在自然语言处理领域具有巨大的潜力和应用前景。通过深度学习技术的发展,LLM模型已经取得了很多突破,并且在多个任务中
什么是大型语言模型LLM)?大型语言模型LLM)是一种人工智能(AI)算法,它使用深度学习技术和海量数据集来理解、总结、生成和预测新内容。生成式人工智能一词也与LLM密切相关,事实上,LLM是用于自然语言处理(NLP)应用中,即用户输入自然语言查询以生成结果。LLM是人工智能中语言模型概念的演变,它极大地扩展了用于训练和推理的数据。反过来,它也大大提高了人工智能模型的能力。虽然对于训练数据。通过提示询问LLM,人工智能推理模型就能生成响应,响应可以是对问题的回答、新生成的文本、摘要文本或情感分析报告。大型语言模型有哪些用途?大型语言模型越来越受欢迎,因为它们在一系列NLP任务中具有广泛的和聊天机器人:与老一代人工智能技术相比,LLM能够以一种更自然的方式与用户进行对话。大型语言模型有哪些优势?大型语言模型具有许多优势,如:可扩展性和适应性:LLM可以作为定制用例的基础。在LLM的生成式人工智能的一种类型,专门用于帮助生成基于文本的内容。千百年来,人类发展了口语来进行交流。语言是所有形式的人类和技术交流的核心;它提供了传达想法和概念所需的词汇、语义和语法。在人工智能领域,语言模型
企业选择合适的图数据库需要考虑多方面的因素,包括以下几点:数据集规模:如果需要处理大规模的图形数据,应选择支持水平扩展和集群部署的图数据库。查询需求:不同的图数据库对数据类型和查询需求的支持程度有所不同,应根据实际需求选择。性能和可扩展性:不同的图数据库性能和可扩展性有所不同,应选择性能和可扩展性良好的图数据库。支持程度:选择使用支持程度好的图数据库,可以得到更好的技术支持。维护和成本:选择维护成本低、方便使用的图数据库,能够降低维护成本和使用难度。在选择图数据库时,应根据具体需求进行综合分析、评估和选择。星环科技分布式图数据库是国内比较知名的图数据库产品之一。星环分布式图数据库StellarDB星环科技在图计算领域深耕多年,自主研发了分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB在数据导入、多跳查询和图算法性能方面实现了数倍升级,同时在易用...
数据库作为提供数据存储与处理能力的基础软件,是信息系统的基础、信息安全的基石,因此,数据库自主可控和国产化替代已经刻不容缓。兼容性是国产化替代关键,自研数据库更具潜力Oracle数据库发展较早,在国内市场内占领了一定先机,企业经过信息化的长期积累和革新,基于Oracle开发了大量的系统业务。为了能够适配新的国产数据库产品,必须对应用代码进行大量修改,各数据表的数据类型、函数、语法规则需要进行系统、全面的改造,这就要求新的国产数据库对原有数据库能够有很好的兼容性支持,降低迁移的代码改造成本。Oracle经过多年的发展,在SQL语言、性能、实例形态、容灾方案等方面有很多积累扩展。若要实现Oracle数据库的国产化替代,除了要能够提供在性能、容灾能力、安全能力等方面全方位提供对等的能力,首先要解决的就是如何兼容Oracle的大量SQL方言,尤其是Oracle的PL/SQL这一独特的广受欢迎的语法体系。中国信通院《数据库发展研究报告》中表示,“国内关系型数据库产品中多数是基于MySQL和PostgreSQL二次开发的”。因此,这些产品对MySQL、PostgreSQL兼容性较好,但没有体系化的...
行业资讯
数字政府建设
近日,领先的IT市场研究和咨询公司IDC发布2022年数字政府百强榜,梳理出数字政府领域领先的技术供应商,评估了技术提供商的市场能力及市场份额。星环科技作为企业级大数据基础软件开发商,成功入选IDC数字政府百强榜“大数据及数据治理”模块。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。在政府领域,星环科技通过智慧政务数字底座为政府数字化转型建设提供计算、存储、算法等基础能力支撑,归集业务数据,优化业务流程,治理出有价值的数据资源,进行专题分析沉淀数据资产,服务部门之间数据共享与业务协同,服务领导决策与政策制定,服务公众、企业便捷办事。公司产品已被多个部委或省市机关部门使用,助力构建数字化政府,提升治理效率。比如星环科技基于数据云平台TDC为建设上海市数据资源平台提供了底层支撑,将70多个委办局以及16个区县业务库的结构化和非结构化数据进行归集,构建三级数据共享交换体系,保障数据安全,支撑“一网通办”等数据服务能力。此外,根据不...
利用星环科技数据云平台TDC打造的基于PaaS平台的绿色轨道交通线网指挥中心,为轨交集团打造技术中台、数据中台、模型中台、业务中台。与传统模式相比,PaaS模式采取集约化部署,能大大提高资源利用率;可为开发人员提供隔离的租户环境,灵活选择所需大数据与AI能力,进行探索分析和数据挖掘。技术中台:统一资源管控,灵活资源分配,快速资源申请与部署。数据中台:全量数据接入;面向应用主题的指标计算与规范化数据存储。模型中台:基于人工智能、深度学习的算法模型,支撑业务分析、评估、与决策。业务中台:采用微服务架构,串联系统功能,打通整合业务应用。通过采集实时能耗、电能质量、设备状态等实时数据和客流信息、列车运营信息、基础信息等非实时数据,基于星环科技智能分析工具Sophon进行建模预测,支撑上层能耗统计与监测应用、能耗综合评估应用,实现行车调度精细化,促进轨道交通绿色低碳发展。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。通过为企业搭建数字化转型的数字底座,星环科技助力政府、金融、能源、...
近年来,随着数字经济的蓬勃发展,数据跨境活动日益频繁,数据处理者的数据出境需求快速增长。为规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全、自由流动,国家互联网信息办公室公布了《数据出境安全评估办法》,9月1日起施行。《数据安全出境评估办法》构建了我国数据出境安全评估的制度,然而企业在具体落地方面,还存在诸如数据分类分级;重要数据识别、存储、管理;数据安全监督;敏感数据防泄露等实际困难,国内迫切需要落实数据安全出境的企业。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,构建明日数据世界。在数据安全与流通方面,星环科技具备一系列产品和解决方案。针对有数据跨境需求的企业,星环科技可以提供一套可落地的企业数据安全出境合规解决方案,为企业提供数据跨境一站式服务,助力企业高效、合规的开展数据流通业务。以某智能车企云端车联网全球化数据安全合规案例为例,针对客户面对的系统内存在大量个人隐私数据,但是没有资产地图;缺乏数据分类分级策略;缺乏个人隐私数据使用、流转的监测与防护;需要敏感资产风险评...
随着科技和信息技术的快速发展,时空数据已经成为重要的技术支撑和决策工具。与此同时,国内也出现了不少优秀的国产时空数据库产品,不仅在空间分析、时序分析等方面实现了卓越的表现,同时也在存储管理、可视化展示等方面有着出色的成果。不少时空数据库产品已实现了高可靠性、高性能和高稳定性的功能,在交通运输、城市规划、GIS和物流供应链等领域都有着广泛的应用。其中星环科技的分布式时空数据库-TranswarpSpacture就是其中一款优秀的时空数据库产品。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。产品优势原生空间:时空数据类型,针对空间时空数据的特定优化。兼容OGC标准:提供丰富的分析函数,具备复杂分析挖掘能力。支持SQL:基于SQL完成空间分析和轨迹分析,降低产品使用门槛。兼容Po...
星环SophonP²C是企业级隐私计算平台,拥有多项性能及安全认证,平台支持不同场景的隐私计算需求,包括横纵向联邦学习、多方安全计算、基于差分隐私的数据发布、匿踪查询等,为多方数据安全协作提供完整的平台底座。SophonP²C可用于解决跨组织协作时无法安全利用各方数据的难题,助力数据流通应用的合法合规。在保障隐私的前提下,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期,提供多种开箱即用的工具,方便用户进行数据处理、分析、特征工程等工作,可快速进行多方数据统计、分析建模和应用工作。平台拥有的多种适应不同安全和通讯环境的加密安全手段和通信架构,为跨组织的数据协作提供安全、可靠、高效的平台支持。分布式隐私计算平台SophonP²C产品优势:支持多种隐私计算框架,平台易用易部署1.采用同态加密、差分隐私、秘密分享、不经意传输等隐私技术,覆盖联邦学习(FL)、多方安全计算(MPC)、匿踪查询(PIR)、隐私求交(PSI)等多种隐私计算功能。2.支持大数据规模的隐私计算场景,支持亿级数据进行联邦学习、多方安全计算和隐私求交。3.提供页面可视化安装部署,并支持实体部署、容器部署、...
行业资讯
边缘计算平台
在边缘计算领域,星环科技研发了边缘计算平台Sophon。Sophon是解决多模态数据集成和治理过程中的边缘化、智能化的云端-边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云-边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。Sophon在智能制造、智能安防、智能工地、智能交通、智能城市、智能校园、智能加油站等城市治理、设备可预测性维护等云边一体场景有着广泛的应用。当前边缘计算作为产业数字化转型核心技术已形成共识,我国也高度重视边缘计算的发展,积极推进边缘计算在工业互联网等多个领域的技术、标准与产业发展。星...
图数据库是一种用于处理图形数据的特殊类型的数据库。它们旨在存储和管理关系和连接,具有比其他类型的数据库更强大的能力。目前国内有众多优秀图数据库产品,星环科技图数据库产品StellarDB其中之一。TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。TranswarpStellarDB优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的...
星环科技数据底座方案已在多个场景落地应用:广西某水电企业工业大数据生态云平台按照“统一规划、统一设计、统一建设”原则开展适应电力能源需求的“云-雾-端”多级、多云协同云计算架构设计。形成电力能源企业计算云、存储云、网络云、安全云等多云架构体系。打造包含智慧运营中心、设备状态诊断中心、安全应急中心、气象资源中心、智慧营销中心与智慧电厂的核心智慧化平台,实现数字化业务管控、智慧化企业经营和生态化商业服务的完整生态,实现企业的数字化转型。工业大数据生态云平台实施分为平台构建、数据资产治理实施与基础门户建设三个部分。其中IaaS层提供计算资源、存储资源、网络资源等基础设施服务;PaaS层由容器云、微服务治理、DevOps、敏捷开发平台、大数据平台、数据资产管理、统一应用门户等组成,为上层智慧企业应用提供基础能力平台的支撑,未来可进一步扩展人工智能平台、元宇宙、区块链、数字孪生等新技术应用平台;SaaS层应用提供数字化业务管理、智慧化企业运营管控、生态化商业服务等应用,并基于统一应用门户为用户提供交互服务。新能源集控中心是实时数仓在新能源方面的应用,跟水电比较像,比如区域监控中心一体化大数据应用...