大模型纳管

星环模型运营平台
星环模型运营平台(Sophon LLMOps)是星环科技推出的企业级模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。

大模型纳管 更多内容

SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一、统一运维、统一应用、统一监控,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成理成本,控制模型生产环境风险。目录1、产品定位2、产品价值3、产品架构4、平台运行流程5、技术特点6、主要功能7、客户案例
SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一、统一运维、统一应用、统一监控,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成理成本,控制模型生产环境风险。目录1、产品定位2、产品价值3、产品架构4、平台运行流程5、技术特点6、主要功能7、客户案例
SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一、统一运维、统一应用、统一监控,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成理成本,控制模型生产环境风险。目录1、产品定位2、产品价值3、产品架构4、平台运行流程5、技术特点6、主要功能7、客户案例
SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一、统一运维、统一应用、统一监控,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成理成本,控制模型生产环境风险。目录1、产品定位2、产品价值3、产品架构4、平台运行流程5、技术特点6、主要功能7、客户案例
星环科技SophonLLMOps支持DeepSeekR1全参版本以及蒸馏版本。SophonLLMOps是一款企业级的模型运营管理平台,支持/小模型的统一管理、开源及商业化模型统一、底层企业内部,加速基于模型的企业级应用快速落地。本篇将聚焦如何基于LLMOps部署DeepSeekR1。1.DeepSeekR1权重文件下载进入SophonLLMOps模型管理模块,选择新建模型-创建版本国内外GPU/NPU(ARM/x86)异构算力的混合部署、资源精细化切分及调度、模型及应用效果评估、全局状态监控及预警。企业既可以直接访星环科技云服务(网址:llmops.wuya-ai.com),基于满血DeepSeek671B(fp8)R1的训练、推理、应用开发;也能够在私有化环境里快速使用R1模型进行具备深度思考的服务及应用开发,能够利用DeepSeekR1实现知识库和工具调用,并快速部署至,支持从huggingface一键拉取对应的模型文件到平台。下载完成后可在模型详情预览模型基本信息2.部署资源预估提前预估部署该模型所需要的硬件资源,根据推荐资源进行部署。3.部署DeepSeekR1
统一——统一、统一运维、统一应用、统一监控、统一评估、统一解释外,针对语言模型的微调、持续提升、评估、对齐等提供从计算框架、工具到计算、存储、通信的调度和优化支持。第三,SophonLLMOps具有星环语言模型运营平台-SophonLLMOpsSophonLLMOps作为一个全面的模型统一运营管理平台,旨在为用户打通从数据接入和开发、提示工程、模型微调、模型上架部署到模型应用编排和业务效果对齐的全链路流程,从而实现针对模型的“数据和分析的持续提升”。星环科技SophonLLMOps的工具链优势体现在以下几个方面:首先,SophonLLMOps拥有自己的样本仓库能力,覆盖训练数据开发、推理数据开发、数据维护等工作,对语言模型涉及的原始数据、样本数据、提示词数据做清洗、探索、增强、评估和管理等。第二,SophonLLMOps具有模型运维管理能力。除了传统MLOps的六语言模型和其他任务的编排、调度和上线能力。SophonLLMOps提供Agent、Ops、DAG,结合星环科技的多款数据、数据库产品,如向量库Hippo和分布式图数据库StellarDB等,将不同
行业资讯
模型 训练
统一,即统一、统一运维、统一应用、统一监控、统一评估和统一解释外,还需要提供计算框架、工具以及计算、存储、通信的调度和优化支持,以满足语言模型的微调、持续提升、评估和对齐等方面的需求。在模型和其他模型训练是指使用规模数据集进行模型训练的过程。模型训练的目标主要是提高模型的准确性和泛化能力,以便更好地应对各种实际应用场景。模型训练是一个需要结合多种策略和技术的复杂过程,需要在保证准确性和泛化能力的同时,尽可能提高训练速度和效率。模型持续开发和训练工具为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的模型持续开发和训练工具——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来的、具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。针对语言模型及其衍生数据、模型和应用方面的问题,SophonLLMOps工具链需要完成从通用语言模型的训练和微调、模型上架到模型持续运营及提升迭代的全流程任务,从而成功构建满足企业自身业务特点的领域语言模型。在模型训练微调阶段
行业资讯
模型 训练
统一,即统一、统一运维、统一应用、统一监控、统一评估和统一解释外,还需要提供计算框架、工具以及计算、存储、通信的调度和优化支持,以满足语言模型的微调、持续提升、评估和对齐等方面的需求。在模型和其他模型训练是指使用规模数据集进行模型训练的过程。模型训练的目标主要是提高模型的准确性和泛化能力,以便更好地应对各种实际应用场景。模型训练是一个需要结合多种策略和技术的复杂过程,需要在保证准确性和泛化能力的同时,尽可能提高训练速度和效率。模型持续开发和训练工具为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的模型持续开发和训练工具——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来的、具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。针对语言模型及其衍生数据、模型和应用方面的问题,SophonLLMOps工具链需要完成从通用语言模型的训练和微调、模型上架到模型持续运营及提升迭代的全流程任务,从而成功构建满足企业自身业务特点的领域语言模型。在模型训练微调阶段
行业资讯
模型 训练
统一,即统一、统一运维、统一应用、统一监控、统一评估和统一解释外,还需要提供计算框架、工具以及计算、存储、通信的调度和优化支持,以满足语言模型的微调、持续提升、评估和对齐等方面的需求。在模型和其他模型训练是指使用规模数据集进行模型训练的过程。模型训练的目标主要是提高模型的准确性和泛化能力,以便更好地应对各种实际应用场景。模型训练是一个需要结合多种策略和技术的复杂过程,需要在保证准确性和泛化能力的同时,尽可能提高训练速度和效率。模型持续开发和训练工具为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的模型持续开发和训练工具——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来的、具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。针对语言模型及其衍生数据、模型和应用方面的问题,SophonLLMOps工具链需要完成从通用语言模型的训练和微调、模型上架到模型持续运营及提升迭代的全流程任务,从而成功构建满足企业自身业务特点的领域语言模型。在模型训练微调阶段
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...