医药大模型

2021年9月24日,由上海中医药大学主办,星环科技承办的中医药数据与人工智能研讨会在星环科技总部圆满落下帷幕。中医药数据与人工智能研讨会会议由上海中医药大学副校长舒静主持,原国家卫生健康委,北京喜马医疗科技有限公司副总经理黄勤华,上海超级计算中心数据与云计算部副部长徐莹,上海中医药大学中医工程学科秘书李芳杰等人出席会议并作讲话。本次会议主题是“中医药数据与人工智能”,会上嘉宾们围绕中医药数据的发展现状、中医人工智能教学与实践以及中医诊疗仪器的发展思路等内容进行了热烈讨论。加速智能医学人才培养进程推动医院教育创新发展上海中医药大学中医工程研究所所长、终身教授杨华元在进行《医共智慧医疗发展战略需求,围绕发展综合优势,推动学科交叉融合的总体目标,坚持厚基础、重创新的教学理念,培养中医药多学科教材。一方面可以让学生掌握智能医疗、人机交互、数据等技术,另一方面可以以理论学习为、辅助决策,中医治疗等医疗服务。杨华元教授在演讲中坦言,中医药的发展离不开人工智能和数据,在数据建模、数据采集、数据治理等技术问题上上海中医药大学希望可以和星环科技紧密合作,以项目为导向,切实解决

医药大模型 更多内容

2024向星力·未来数据技术峰会将于5月30-31日在上海隆重举办。期间,星环科技将联合铭源慧途举办“智能融合:集团制造与生物医药领域的数据与AI创新应用”闭门研讨会,邀请行业大咖,围绕集团、制造、生物医药领域的数据、AI创新成果和应用交流分享,探讨产业数字化的发展趋势、挑战与机遇,助力企业转型升级、降本增效,开启数字新时代。精彩早知道👇👇👇报名请联系客户经理
行业资讯
专利模型
专利模型是指在专利领域应用的语言模型,它是基于大量的专利文本数据等进行训练,从而能够为专利相关的业务和问题提供专业的解答和支持。随着人工智能技术的发展以及专利数据的大量积累,为了满足专利检索、分析、撰写等工作的高效性和准确性需求,专利模型应运而生。应用场景专利检索与分析:能够更精准地理解用户的检索意图,快速准确地从海量专利数据中找到相关专利,并对专利的技术内容、法律状态等进行深入分析,为开源理念的深入人心,一些专利模型相关的技术和数据资源将逐渐开源,促进学术界和产业界的交流与合作,推动专利模型技术的快速发展和广泛应用。提升:不断优化模型的架构和算法,提高模型的准确性、效率和可解释性,以更好地满足专利领域复杂多样的业务需求。例如,采用更先进的预训练方法、微调策略和模型压缩技术,降低模型的计算成本和存储需求,同时提升模型的性能表现。多模态融合:结合图像、音频等多模态数据,实现对专利内容的更全面、立体的理解和表达。例如,将专利附图与文字描述相结合,更准确地把握专利的技术方案和创新点,为专利的检索、分析和评估提供更丰富
模型主要应用领域广泛,涵盖了多个行业和专业领域。模型可以应用于以下高新技术产业和战略性新兴产业:新一代信息技术领域:包括半导体、集成电路、电子信息、下一代信息网络、人工智能、数据、云计算、软件·问知(InfinityIntelligence),是一款基于星环模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。产品生产,资源循环利用技术开发,新能源汽车整车及关键零部件制造,动力电池技术研发等。生物医药领域:生物制品研发与生产,高端化学药物合成与制剂开发,高端医疗设备与器械设计制造。星环科技无涯·问知星环科技无涯
表示,人工智能作为引领未来的战略的技术和推动产业变革的核心驱动力,在智慧城市,智慧医疗的背景下,未来医疗的行业将融入更多的人工智能高科技,医疗服务将走向真正的智能化,这为中医药事业发展带来了新机遇9月26日,中医人工智能与产教融合论坛暨中医人工智能产业学院成立仪式在上海中医药大学举行。会上,星环科技创新实验室获颁牌。中医人工智能与产教融合论坛暨中医人工智能产业学院成立仪式作为技术与人才全方位培养的合作方,星环科技创始人孙元浩被聘任为上海中医药大学中医人工智能产业学院“星环科技创新实验室”主任,并在会上做学术报告。星环科技创始人兼CEO孙元浩上海中医药大学副书记、副校长朱惠蓉在会上致辞,她。建立中医人工智能产业学院是推进上海中医药大学培养中医高素质、应用型、复合型、创新型人才的重要举措,中医人工智能领域的产学研合作教学步入新的发展阶段。“星环科技创新实验室”将和中医人工智能产业学院一起
模型语言模型是人工智能领域中两个重要的概念,各自有不同的特点和应用场景。模型:通常指的是具有规模参数和复杂计算结构的机器学习模型,这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。模型在各种领域都有广泛的应用,包括自然语言处理、计算机视觉、语音识别和推荐系统等。模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。语言模型:(LargeLanguageModels,简称LLMs)是模型的一个子集,专注于处理自然语言,能够理解、生成和处理规模文本数据。语言模型在机器翻译、文本生成、对话系统等任务上取得显著成果。这些模型通过在大型文本语料库上进行训练,学会理解语言的结构、语义、语境和语用等方面。语言模型的特点是规模庞大,包含数十亿的参数,帮助它们学习语言数据中的复杂模式。模型是一个更广泛的概念,包括了语言模型在内的多种类型的模型,而语言模型则是专门针对自然语言处理任务的模型模型可以应用于多种不同的领域,而语言模型主要应用于自然语言相关的任务。
模型通常具有百亿、千亿级的参数量。这些大量的参数使得模型能够学习到更丰富的语言知识和模式,从而具备更强的语言理解和生成能力。使用海量的无标注文本数据进行训练,数据来源广泛,包括互联网网页、维基百科、书籍论文、问答网站等。通过对大量文本的学习,模型能够掌握各种语言表达和语义关系。与传统的AI模型不同,模型以生成式的方式输出内容,能够根据输入的文本提示生成连贯、有逻辑的文本回复,更像人一样进行的辨别式模型的可用性和专业性,以及生成式模型的迁移学习和泛化能力强的特点,充分发挥不同类型模型的优势,提升整个系统的性能和应用效果。AIAgent技术:具备自然语言处理、风险预测、情报抽取等核心能力医疗效率和质量,推动医疗行业的数字化转型。金融领域:推动构建用户个性化服务体验,提升金融领域营销、运营等价值链效率,拓展数据决策在风控领域的创新应用效果,助力金融行业的数字化转型。工业制造:搭载模型的机器人可以帮助工人提升效率,优化生产流程;还可应用于供应链管理、质量检测等环节,提高制造业的智能化水平。发展趋势端云协同:未来模型将采用端云协同的模式,把模型放在离用户更近的地方,既可以充分利用云端的
模型,涵盖自然语言处理、计算机视觉、生物医药等不同领域。研究人员可以直接在这些模型基础上进行微调或迁移学习,快速构建适用于特定科研任务的专用模型,显著缩短从想法到实现的时间周期。对于高校科研团队而言,模型一体机提供了理想的AI教学与研究平台。它不仅解决了高校计算资源有限的问题,其标准化的环境也更适合教学示范和学生实践。在生命科学领域,研究人员利用一体机上的生物医药模型加速药物分子筛选和蛋白质结构科研模型一体机!助力企业高校科研在人工智能技术迅猛发展的今天,大型预训练模型已成为推动科研创新的重要引擎。然而,对于许多企业和高校科研团队来说,搭建和维护大型AI模型所需的计算资源、技术门槛和运维成本构成了难以逾越的障碍。科研模型一体机应运而生,为解决这一难题提供了"开箱即用"的智能化解决方案。科研模型一体机是一种集成了高性能硬件、优化算法和预训练模型的一体化设备。它将复杂的AI基础设施实现细节上。在硬件配置上,科研模型一体机通常搭载多块高性能GPU或专用AI加速芯片,配备容量内存和高速存储系统,能够满足从模型训练到推理应用的全流程需求。更重要的是,这些硬件资源经过精心优化和系统
模型和小模型是指在机器学习和深度学习中模型的规模和复杂度的不同。模型通常指参数数量较多、层级较深、具有较高的复杂度的模型。这些模型通常需要大量的计算资源和存储空间来进行训练和推断,并且在某些任务中能够取得更好的性能和效果。模型拥有更多的自由度和表达能力,能够更好地拟合、捕捉复杂的数据模式和规律。小模型则对于模型而言,参数数量较少、层级较浅、复杂度较低。这些模型通常需要较少的计算资源和存储空间,可以在资源有限的环境下进行训练和推断。尽管小模型可能无法达到模型的性能水平,但它们通常具有更快的推理速度和更低的存储要。小模型适用于资源受限的设备和场景,并可以在较短的时间内迭代和训练。模型和小模型的选择取决于具体的应用场景和需求。如果需要更高的性能和精度且有足够的计算资源和存储空间,那么模型可能是更好的选择。如果资源有限,但仍需要一定的功能和性能,那么可以使用小模型来满足需求。在现实应用中,也可以根据实际情况进行灵活的选择,例如使用模型进行预训练,然后通过微调和模型压缩等技术将其转化为小模型模型和小模型都有其适用的场景和优势,选择合适的模型有助于提高效率和性能。
行业资讯
模型底座
模型底座是支撑模型训练和应用的基础设施和技术框架,是构建模型的基础支撑部分。AI底座作为模型时代的基础设施,不仅提供从数据管理到模型部署的全方位服务,还在各个行业中展现出广泛的应用潜力。作用与意义提供基础架构支持:模型底座为整个大模型的构建提供了底层的技术框架和基础设施,包括硬件架构、软件架构、通信机制等,确保模型能够高效地运行和处理规模的数据。承载和预处理数据:负责数据的收集模型的训练过程,提高训练效率,同时通过各种优化手段,如调整参数、改进架构等,不断提升模型的性能和表现。实现模型的通用性和扩展性:一个好的模型底座能够使模型具备较强的通用性,适用于多种不同的应用场景和和共享。算力层:硬件设备:包括高性能的、计算芯片,以及规模的存储设备和高速网络设备,为模型训练和推理提供强大的计算能力和数据传输能力。算力调度与管理:通过分布式计算、云计算等技术,实现对计算资源的灵活调度和管理,提高资源的利用率和任务的并行处理能力,确保模型训练能够在高效、稳定的算力环境下进行。算法层:基础模型架构:设计和选择适合模型的基础架构,为模型的学习和表示能力提供保障。训练与优化算法:采用
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...