电网公司基础数据治理方案

数据治理
星环科技提供体系完善的整体数据治理解决方案,涵盖数据治理战略、组织制度机制、数据管理活动和技术工具落地四个方面,同时,还为企业提供数据管理成熟度评估(DCMM)指导,在数据战略,数据治理数据标准、数据架构、数据安全,数据质量,数据应用,数据生存周期 八大项数据管理能力方面结合企业实际需求,帮助客户制定和实施精准有效的解决方案

电网公司基础数据治理方案 更多内容

行业资讯
电网数据治理
电网数据治理是对电网企业在生产、运营、管理等过程中产生的海量数据进行管理和优化的过程,旨在提高数据质量,保障数据安全,提升数据价值。治理背景和目标背景:随着智能电网建设的推进和电力物联网的发展,电网数据量呈爆发式增长,数据来源广泛且类型复杂,包括设备运行数据、电力交易数据、用户用电数据等。目标:通过数据治理,实现数据的标准化、规范化、一致化,提高数据的准确性、完整性和及时性,为电网的安全稳定运行、高效运营管理和智能化决策提供有力支撑。治理难点数据来源与类型复杂:电网数据涵盖了从发电、输电、变电、配电到用电的各个环节,既有结构化数据如设备参数、电量计量数据,也有大量非结构化数据如设备巡检图像、用户模型等,为数据的存储、分析和应用提供统一的模型基础数据加密与访问控制技术:运用加密算法对敏感数据进行加密处理,通过身份认证、授权管理和访问控制等技术,确保只有合法用户才能访问和操作相应的数据治理流程数据规划:结合电网企业的战略规划和业务需求,制定数据治理的总体目标、规划和实施路线图,明确数据治理的范围和重点。数据采集与传输:从电网的各个业务环节采集数据,并通过可靠的通信网络将数据
行业资讯
电网数据治理
电网数据治理是对电网企业在生产、运营、管理等过程中产生的海量数据进行管理和优化的过程,旨在提高数据质量,保障数据安全,提升数据价值。治理背景和目标背景:随着智能电网建设的推进和电力物联网的发展,电网数据量呈爆发式增长,数据来源广泛且类型复杂,包括设备运行数据、电力交易数据、用户用电数据等。目标:通过数据治理,实现数据的标准化、规范化、一致化,提高数据的准确性、完整性和及时性,为电网的安全稳定运行、高效运营管理和智能化决策提供有力支撑。治理难点数据来源与类型复杂:电网数据涵盖了从发电、输电、变电、配电到用电的各个环节,既有结构化数据如设备参数、电量计量数据,也有大量非结构化数据如设备巡检图像、用户模型等,为数据的存储、分析和应用提供统一的模型基础数据加密与访问控制技术:运用加密算法对敏感数据进行加密处理,通过身份认证、授权管理和访问控制等技术,确保只有合法用户才能访问和操作相应的数据治理流程数据规划:结合电网企业的战略规划和业务需求,制定数据治理的总体目标、规划和实施路线图,明确数据治理的范围和重点。数据采集与传输:从电网的各个业务环节采集数据,并通过可靠的通信网络将数据
行业资讯
电网数据治理
电网数据治理是对电网企业在生产、运营、管理等过程中产生的海量数据进行管理和优化的过程,旨在提高数据质量,保障数据安全,提升数据价值。治理背景和目标背景:随着智能电网建设的推进和电力物联网的发展,电网数据量呈爆发式增长,数据来源广泛且类型复杂,包括设备运行数据、电力交易数据、用户用电数据等。目标:通过数据治理,实现数据的标准化、规范化、一致化,提高数据的准确性、完整性和及时性,为电网的安全稳定运行、高效运营管理和智能化决策提供有力支撑。治理难点数据来源与类型复杂:电网数据涵盖了从发电、输电、变电、配电到用电的各个环节,既有结构化数据如设备参数、电量计量数据,也有大量非结构化数据如设备巡检图像、用户模型等,为数据的存储、分析和应用提供统一的模型基础数据加密与访问控制技术:运用加密算法对敏感数据进行加密处理,通过身份认证、授权管理和访问控制等技术,确保只有合法用户才能访问和操作相应的数据治理流程数据规划:结合电网企业的战略规划和业务需求,制定数据治理的总体目标、规划和实施路线图,明确数据治理的范围和重点。数据采集与传输:从电网的各个业务环节采集数据,并通过可靠的通信网络将数据
电网数字化转型的核心是智能化运行系统。智能化运行系统是一种基于智能化技术的电力系统运营管理平台,可以对电力系统进行全面监测、智能分析和优化调度。利用云计算、大数据、人工智能等技术手段,实现了对电网运行基础设施数字化、业务数字化和服务数字化等方面。基础设施数字化主要包括电网设备和工程的数字化管理,实现电网信息化和管理的全面覆盖。业务数字化主要包括电力市场、能源交易、电网规划、设备运维等业务的数字化管理助力电网数字化转型星环科技为企业进行数字化转型提供数据全生命周期的处理工具,包括大数据平台、分布式数据库、数据开发和智能分析工具、以及容器化的资源管理平台。为企业数字化转型提供“底座”或者“引擎”。星环科技在二十多个行业的客户使用这些产品进行数字化转型,赋能合作伙伴为客户打造包括数据湖、数据仓库、数据云、智能分析、实时计算等方面的应用和解决方案,同时,星环科技加强产品研发和创新,为客户和合作伙伴提供随着信息技术的发展,电网数字化转型正逐渐成为电力行业的趋势。数字化转型的目的是利用现代化的技术手实现电网的智能化、自动化和高效化,提高网的运行效率和可靠性,降低运营成本,促进电力行业的可持续发展
电网数字化转型的核心是智能化运行系统。智能化运行系统是一种基于智能化技术的电力系统运营管理平台,可以对电力系统进行全面监测、智能分析和优化调度。利用云计算、大数据、人工智能等技术手段,实现了对电网运行基础设施数字化、业务数字化和服务数字化等方面。基础设施数字化主要包括电网设备和工程的数字化管理,实现电网信息化和管理的全面覆盖。业务数字化主要包括电力市场、能源交易、电网规划、设备运维等业务的数字化管理助力电网数字化转型星环科技为企业进行数字化转型提供数据全生命周期的处理工具,包括大数据平台、分布式数据库、数据开发和智能分析工具、以及容器化的资源管理平台。为企业数字化转型提供“底座”或者“引擎”。星环科技在二十多个行业的客户使用这些产品进行数字化转型,赋能合作伙伴为客户打造包括数据湖、数据仓库、数据云、智能分析、实时计算等方面的应用和解决方案,同时,星环科技加强产品研发和创新,为客户和合作伙伴提供随着信息技术的发展,电网数字化转型正逐渐成为电力行业的趋势。数字化转型的目的是利用现代化的技术手实现电网的智能化、自动化和高效化,提高网的运行效率和可靠性,降低运营成本,促进电力行业的可持续发展
电网数字化转型的核心是智能化运行系统。智能化运行系统是一种基于智能化技术的电力系统运营管理平台,可以对电力系统进行全面监测、智能分析和优化调度。利用云计算、大数据、人工智能等技术手段,实现了对电网运行基础设施数字化、业务数字化和服务数字化等方面。基础设施数字化主要包括电网设备和工程的数字化管理,实现电网信息化和管理的全面覆盖。业务数字化主要包括电力市场、能源交易、电网规划、设备运维等业务的数字化管理助力电网数字化转型星环科技为企业进行数字化转型提供数据全生命周期的处理工具,包括大数据平台、分布式数据库、数据开发和智能分析工具、以及容器化的资源管理平台。为企业数字化转型提供“底座”或者“引擎”。星环科技在二十多个行业的客户使用这些产品进行数字化转型,赋能合作伙伴为客户打造包括数据湖、数据仓库、数据云、智能分析、实时计算等方面的应用和解决方案,同时,星环科技加强产品研发和创新,为客户和合作伙伴提供随着信息技术的发展,电网数字化转型正逐渐成为电力行业的趋势。数字化转型的目的是利用现代化的技术手实现电网的智能化、自动化和高效化,提高网的运行效率和可靠性,降低运营成本,促进电力行业的可持续发展
电网数字化转型的核心是智能化运行系统。智能化运行系统是一种基于智能化技术的电力系统运营管理平台,可以对电力系统进行全面监测、智能分析和优化调度。利用云计算、大数据、人工智能等技术手段,实现了对电网运行基础设施数字化、业务数字化和服务数字化等方面。基础设施数字化主要包括电网设备和工程的数字化管理,实现电网信息化和管理的全面覆盖。业务数字化主要包括电力市场、能源交易、电网规划、设备运维等业务的数字化管理助力电网数字化转型星环科技为企业进行数字化转型提供数据全生命周期的处理工具,包括大数据平台、分布式数据库、数据开发和智能分析工具、以及容器化的资源管理平台。为企业数字化转型提供“底座”或者“引擎”。星环科技在二十多个行业的客户使用这些产品进行数字化转型,赋能合作伙伴为客户打造包括数据湖、数据仓库、数据云、智能分析、实时计算等方面的应用和解决方案,同时,星环科技加强产品研发和创新,为客户和合作伙伴提供随着信息技术的发展,电网数字化转型正逐渐成为电力行业的趋势。数字化转型的目的是利用现代化的技术手实现电网的智能化、自动化和高效化,提高网的运行效率和可靠性,降低运营成本,促进电力行业的可持续发展
电网数字化转型的核心是智能化运行系统。智能化运行系统是一种基于智能化技术的电力系统运营管理平台,可以对电力系统进行全面监测、智能分析和优化调度。利用云计算、大数据、人工智能等技术手段,实现了对电网运行基础设施数字化、业务数字化和服务数字化等方面。基础设施数字化主要包括电网设备和工程的数字化管理,实现电网信息化和管理的全面覆盖。业务数字化主要包括电力市场、能源交易、电网规划、设备运维等业务的数字化管理助力电网数字化转型星环科技为企业进行数字化转型提供数据全生命周期的处理工具,包括大数据平台、分布式数据库、数据开发和智能分析工具、以及容器化的资源管理平台。为企业数字化转型提供“底座”或者“引擎”。星环科技在二十多个行业的客户使用这些产品进行数字化转型,赋能合作伙伴为客户打造包括数据湖、数据仓库、数据云、智能分析、实时计算等方面的应用和解决方案,同时,星环科技加强产品研发和创新,为客户和合作伙伴提供随着信息技术的发展,电网数字化转型正逐渐成为电力行业的趋势。数字化转型的目的是利用现代化的技术手实现电网的智能化、自动化和高效化,提高网的运行效率和可靠性,降低运营成本,促进电力行业的可持续发展
公司数据治理方案一、数据治理目标提升数据质量,确保数据的准确性、完整性、一致性和时效性,为公司决策提供可靠依据。建立统一的数据标准和规范,打破数据孤岛,促进数据共享与流通。加强数据安全管理,保护公司核心数据资产,防范数据泄露风险。优化数据管理流程,提高数据管理效率,降低数据管理成本。二、数据治理组织架构数据治理委员会:由公司高层领导组成,负责制定数据治理战略、政策和决策,协调解决数据治理中的治理工作。三、数据治理流程数据规划:根据公司业务战略和需求,制定数据战略规划,明确数据管理目标、范围和重点。数据标准制定:建立统一的数据标准,包括数据格式、编码规则、数据字典等,确保数据的一致性和可比性安全管理:制定数据安全策略,加强数据访问控制、加密传输和存储,防范数据泄露风险。数据共享与应用:建立数据共享机制,促进数据公司内部的流通和应用,为业务创新和决策支持提供数据服务。四、数据治理重大问题。数据管理部门:作为数据治理的执行机构,负责数据标准制定、数据质量管理、数据安全管理等具体工作。业务部门:承担数据生产者和使用者的角色,负责本部门数据的录入、维护和应用,配合数据管理部门开展数据
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...