基于大模型的小模型

行业资讯
小模型和大模型的区别
小模型和大模型的主要区别在于其规模、复杂度和性能方面。规模:模型的参数数量和大小通常比大模型要少,其层数也较浅。大模型通常需要更多的参数,更深的层数,具有更高的复杂度,以获得更好的精度和效果。复杂度:小模型的结构较简单,可以处理相对简单的任务,而大模型的结构比较复杂,可以用于大规模和复杂的数据集和任务。训练和推理时间:小模型的训练和推理时间通常较短,因为小模型的参数量少、层数浅,可以更快地完成计算。相反,大模型需要更多的计算资源和时间来训练和推理。精度和效果:大模型通常可以获得更高的精度和效果,因为它们具有更多的参数和自由度,够更准确地拟合数据。但是,小模型也可以获得很好的精度和效果,尤其在数据资源受限的情况下。可扩展性:小模型通常更易于扩展和部署,因为它们需要的计算资源和存储空间少,可以在资源有限的环境中运行。相反,大模型需要更多的计算资源和存储空间,部署时需要更多的硬件和上下文环境。小模型和大模型都有对应的应用场景。小模型适用于资源受限、对计算速度要求苛刻或用于简单的任务。大模型适用于处理大规模和复杂的任务,需要更高的精度和效果。在实际应用中,根据具体的需求和资源限制选择合适的模型。
基于大模型的小模型 更多内容

行业资讯
大模型和小模型
大模型和小模型是指在机器学习和深度学习中模型的规模和复杂度的不同。大模型通常指参数数量较多、层级较深、具有较高的复杂度的模型。这些模型通常需要大量的计算资源和存储空间来进行训练和推断,并且在某些任务中能够取得更好的性能和效果。大模型拥有更多的自由度和表达能力,能够更好地拟合、捕捉复杂的数据模式和规律。小模型则对于大模型而言,参数数量较少、层级较浅、复杂度较低。这些模型通常需要较少的计算资源和存储空间,可以在资源有限的环境下进行训练和推断。尽管小模型可能无法达到大模型的性能水平,但它们通常具有更快的推理速度和更低的存储要。小模型适用于资源受限的设备和场景,并可以在较短的时间内迭代和训练。大模型和小模型的选择取决于具体的应用场景和需求。如果需要更高的性能和精度且有足够的计算资源和存储空间,那么大模型可能是更好的选择。如果资源有限,但仍需要一定的功能和性能,那么可以使用小模型来满足需求。在现实应用中,也可以根据实际情况进行灵活的选择,例如使用大模型进行预训练,然后通过微调和模型压缩等技术将其转化为小模型。大模型和小模型都有其适用的场景和优势,选择合适的模型有助于提高效率和性能。

行业资讯
大模型和小模型
大模型通常指使用大规模数据和强大的计算能力训练出来的具有大量参数的模型,是“大数据+大算力+强算法”结合的产物,参数量可达数十亿甚至数千亿。小模型参数量相对较少的深度神经网络模型,计算需求低,体积小,训练和推理速度快。特点大模型:强大的性能和泛化能力:能够更精确地拟合复杂的数据分布,在自然语言处理、图像识别、语音识别等复杂任务上展现出更出色的性能和准确度,可适应一系列不同类型的任务。高预测能力以及专业人员的维护费用等。小模型:轻量化和高效性:参数量少,计算需求低,训练和推理速度快,可在资源有限的设备和环境中使用,如移动设备、嵌入式系统等,适合对实时性要求高的应用,能够快速响应。低成本:训练:能在大数据集上捕捉更多细节和模式,从而提供更准确的预测和决策支持。训练和推理成本高:由于参数量巨大,训练时间长,需要大量的时间和计算资源投入,对硬件要求高,部署和维护成本也较高,包括计算资源、存储空间和推理成本低,对资源有限或预算紧张的用户更具吸引力,易于部署和维护。可解释性相对较好:结构相对简单,更容易理解和解释其决策过程和结果。

行业资讯
大模型平台
大模型平台是指基于大规模参数的机器学习模型构建的平台,这些平台通常提供模型训练、部署、推理等服务,支持多种应用场景。以下是对大模型平台的详细阐述:定义大模型平台是基于具有大规模参数和复杂计算结构的数十亿个参数,模型大小可以达到数百GB甚至更大。涌现能力:当模型的训练数据突破一定规模时,模型会涌现出之前小模型所没有的复杂能力和特性。更好的性能和泛化能力:大模型通常具有更强大的学习能力和泛化能力机器学习模型构建的平台。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型平台的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。特点巨大的规模:大模型包含,能够在各种任务上表现出色。多任务学习:大模型通常会一起学习多种不同的任务,如自然语言处理中的机器翻译、文本摘要、问答系统等。大数据训练:大模型需要海量的数据来训练,通常在TB以上甚至PB级别的数据集。强大的计算资源:训练大模型通常需要数百甚至上千个GPU,以及大量的时间。应用场景自然语言处理:大语言模型(LLM)是大模型的子分类,专门通过处理大量文本数据来理解和生成人类语言,执行各种自然语言处理任务

行业资讯
大语言模型
大语言模型:开启智能服务新时代大语言模型是什么大语言模型是基于深度学习技术构建,通过对海量文本数据进行训练,以实现对自然语言理解与生成的人工智能模型。大语言模型的训练过程主要分为预训练和微调两个阶段,针对特定任务(如文本分类、问答系统、文本生成等),使用小规模的有标注数据进行有监督学习。通过微调,模型能够将预训练阶段学到的通用语言知识与特定任务的要求相结合,从而在具体任务上表现出更好的性能。大语言多个领域和任务提供服务。大语言模型还催生了新的产业形态。随着大语言模型技术的发展和应用,围绕大语言模型形成了一系列新的产业生态。包括大语言模型的研发、训练、部署,以及基于大语言模型开发的各种应用和服务。大,根据事件要点自动生成新闻稿件。在体育赛事报道中,模型可以在比赛结束后的短时间内,依据比赛数据、球员表现等信息,生成赛事结果报道、精彩瞬间回顾等内容,大大提高了新闻发布的时效性。(二)客户服务场景基于大语言模型驱动的客服机器人和虚拟助手在客户服务场景中发挥着重要作用。客服机器人能够24小时不间断地为客户提供服务,快速准确地回答客户的常见问题,如产品咨询、售后服务等。(三)翻译与多语言处理大语言模型在

行业资讯
基于大模型的知识工程建设
基于大模型的知识工程建设:开启智能时代的知识新纪元在人工智能技术快速发展的今天,基于大模型的知识工程建设正在重塑人类知识的生产、组织和应用方式。这项技术突破不仅带来了知识处理效率的质的飞跃,更开启了应用层面,大模型展现出强大的创新能力。它能够将不同领域的知识进行跨域融合,产生新的知识发现。例如,在药物研发中,大模型可以结合化学、生物学、医学等多学科知识,预测药物分子特性,加速新药开发进程。基于大创新时代。展望未来,随着大模型技术的不断进步,知识工程建设将朝着更智能、更高效的方向发展。这将为科学研究、技术创新和社会发展提供强大的知识支撑,推动人类文明迈向新的高度。在这个知识经济时代,基于大模型的知识工程建设必将发挥越来越重要的作用。人机协同的知识创新新模式。大模型通过深度学习海量数据,构建起复杂的知识表示体系。这种能力使得大模型可以理解自然语言中的隐含知识,进行知识推理和创造性应用。在知识获取方面,大模型展现出前所未有的优势。传统知识工程需要人工构建知识库,而大模型可以直接从非结构化数据中提取知识。例如,在医疗领域,大模型能够快速阅读海量医学文献,提取疾病特征、治疗方案等关键信息,构建起动态更新的医学知识库。知识组织方式也

行业资讯
基于大模型的私有化本地知识问答
基于大模型的私有化本地知识问答是一种利用大型语言模型技术,在本地部署并针对特定组织或个人的私有知识进行问答的应用模式。原理数据收集与整理:首先需要收集组织或个人本地的各种知识数据,如企业内部的产品手册、技术文档、操作流程、客户案例,或者个人的学习资料、研究笔记等。这些数据是构建私有化知识问答系统的基础。模型训练与微调:利用收集到的本地数据,对预训练的大模型进行微调。通过将本地知识与大模型的通用知识相结合,使模型能够更好地理解和处理与本地相关的问题。在微调过程中,模型会学习本地数据中的语言模式、概念关系和业务逻辑等,从而适应特定的知识领域和应用场景。问答交互:经过训练和微调后的大模型,能够接收,提供更贴合实际需求的个性化服务。高效准确:借助大模型的强大语言理解和生成能力,能够快速准确地回答各种复杂问题,提高知识获取的效率。可扩展性:随着组织或个人知识的不断积累和更新,可以方便地对系统进行扩展和用户输入的问题,并基于其学习到的本地知识和语言理解能力,生成准确、相关的回答。用户可以通过各种终端设备,如电脑、手机等,与系统进行交互,获取所需的知识信息。特点数据隐私与安全:数据存储和处理都在本地

行业资讯
基于大模型做应用
基于大模型开发应用是当前人工智能领域的热门方向,以下从应用场景、开发流程、面临挑战等方面介绍如何基于大模型做应用:应用场景探索智能客服:利用大模型理解用户咨询内容,自动生成准确回答。如电商平台的售后基础代码框架,检查代码中的语法错误并给出修改建议。开发流程明确需求:确定应用解决的具体问题和功能。如开发智能客服,需梳理常见问题类型、用户交互方式、响应速度要求等。选择大模型:依据需求和资源选择合适的大模型。考虑模型的性能、适用场景、可访问性、成本等。数据准备:部分场景下,需用特定数据微调大模型。收集、整理相关数据,如智能客服收集历史对话数据,确保数据质量与多样性。开发集成:通过API调用或本地部署方式将大模型集成到应用中。使用API简单快捷,适合初创项目;本地部署可保障数据安全与隐私,适合对数据敏感的应用。开发过程中,结合前端界面设计,打造良好用户体验。测试优化:对应用进行功能测试,检查咨询,大模型可快速回应商品退换货政策、物流进度等常见问题,提高客服效率与用户满意度。内容创作辅助:在写作、设计领域发挥作用。例如,帮助文案撰写人员生成创意、完善内容,为设计师提供设计理念和文案描述

行业资讯
基于大模型的智能投研
事件发展,以及事件的传播涟漪效应带来的市场反应。这样就实现了投研业务逻辑与大模型的能力对齐,而这正是星环科技构建基于大模型的智能投研新范式的底层逻辑。针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融行业智能投研大模型无涯Infinity。星环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型。整个无涯的开发是基于星环科技图数据库、向量数据库、时序数据库和时空数据库及高性能计算集群的硬实;基于星环科技对图数据库、深度图推理算法的技术,形成了大规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域大语言模型的坚实底座。随着以chatGPT为代表的生成式大模型在NLP领域的崛起,金融领域专属的行业大模型也不断涌现。金融大模型应用同时赋能主观研究和量化投资,如何将各类文本、图谱、时序、时空另类数据有效整合,实现

行业资讯
大模型应用开发
时代的钥匙。它是基于深度学习框架,通过对海量数据的学习,从而具备理解、生成、判断等多种能力的模型。这些能力赋予了大模型广泛的应用空间,使其成为各行业创新发展的重要驱动力。大模型:概念与基石定义与原理剖析大模型,全称大规模预训练模型,是基于深度学习框架构建的、拥有海量参数的神经网络模型。其核心原理在于模拟人类大脑神经元的工作方式,通过构建多层神经网络,让模型能够自动学习数据中的复杂模式和特征。在这花费大量时间查阅资料、编写基础代码。而现在,借助大模型,程序员只需输入简单的描述,就能自动生成相应的代码片段,大大提高了编码速度。在优化服务方面,以客户服务为例,大模型驱动的智能客服能够实现24小时不间断解锁大模型应用开发:开启智能时代新大门大模型应用开发:崭新时代的科技浪潮在科技飞速发展的今天,大模型应用开发无疑是最耀眼的浪潮之一,正以前所未有的速度改变着我们的生活和工作方式。从智能语音助手到图像识别技术,从医疗诊断辅助到金融风险预测,大模型的身影无处不在,展现出强大的影响力与潜力。回顾科技发展历程,每一次重大的技术突破都深刻地改变了人类社会。大模型作为人工智能领域的关键技术,被视为开启下一个
猜你喜欢

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...