大模型算法和案例

行业资讯
大模型算法
大模型算法是一类利用大量数据和计算资源训练而成的深度学习模型,通常具有很高的表达能力和泛化能力。大模型算法的工作原理通常包括以下几个步骤:接收问题:模型接收输入的问题或数据。理解问题:模型分析问题或后的回答或输出提供给用户。大模型算法应用领域大模型算法在多个领域取得了广泛的应用,包括但不限于:自然语言处理:大模型可以用于机器翻译、语音识别、文本摘要、情感分析等任务,提升自然语言处理的性能和准确性。图像识别和计算机视觉:大模型在目标检测、语义分割、图像生成等方面表现出色,推动了计算机视觉技术的发展。产业应用:在智能制造和智能交通等领域,大模型通过优化生产流程和交通管理,提高了生产效率和交通安全性。智能客服:结合大模型开发与服务平台,企业可以构建高效、智能的客服系统,提升客户体验和满意度。数据的意图和关键信息。检索信息:模型在内部记忆中搜索与问题或数据相关的信息。组织回答:模型将检索到的信息组织成连贯的文本或输出。优化回答:模型对组织好的回答进行自我检查和优化。提供回答:模型将最终优化
大模型算法和案例 更多内容

行业资讯
AI大模型算法
AI大模型算法是当前人工智能领域的一个重要研究方向,涉及到多个方面,包括模型架构、训练技术、微调方法、以及在特定领域的应用等。大模型,也称为基础模型,是指具有大量参数和复杂结构的机器学习模型,能够(LargeLanguageModel)通常是具有大规模参数和计算能力的自然语言处理模型。算法脆弱性:随着AI大模型进入各行业的应用探索阶段,算法的脆弱性和漏洞成为不可忽视的问题。模型微调:模型微调是一种常见的方法,它利用预训练模型的强大能力,同时还能够适应新的数据分布。处理海量数据、完成各种复杂的任务,如自然语言处理、计算机视觉、语音识别等。超大模型:超大模型是大模型的一个子集,它们的参数量远超过大模型,能够提供更强大的性能和更广泛的应用。大语言模型:大语言模型

行业资讯
大模型和小模型
大模型通常指使用大规模数据和强大的计算能力训练出来的具有大量参数的模型,是“大数据+大算力+强算法”结合的产物,参数量可达数十亿甚至数千亿。小模型参数量相对较少的深度神经网络模型,计算需求低,体积小,训练和推理速度快。特点大模型:强大的性能和泛化能力:能够更精确地拟合复杂的数据分布,在自然语言处理、图像识别、语音识别等复杂任务上展现出更出色的性能和准确度,可适应一系列不同类型的任务。高预测能力:能在大数据集上捕捉更多细节和模式,从而提供更准确的预测和决策支持。训练和推理成本高:由于参数量巨大,训练时间长,需要大量的时间和计算资源投入,对硬件要求高,部署和维护成本也较高,包括计算资源、存储空间以及专业人员的维护费用等。小模型:轻量化和高效性:参数量少,计算需求低,训练和推理速度快,可在资源有限的设备和环境中使用,如移动设备、嵌入式系统等,适合对实时性要求高的应用,能够快速响应。低成本:训练和推理成本低,对资源有限或预算紧张的用户更具吸引力,易于部署和维护。可解释性相对较好:结构相对简单,更容易理解和解释其决策过程和结果。

近日,在2024世界人工智能大会“迈向AGI:大模型焕新与产业赋能”论坛上,《2024大模型典型示范应用案例集》(以下简称《案例集》)重磅发布!星环科技无涯·问知InfinityIntelligence成功入选《案例集》。2024年,我国将人工智能的发展上升为国家战略,大模型的产业化应用落地进一步提速。作为以产业化为导向的重磅前沿研究成果,《案例集》展示了新全的大模型创新融合应用发展成果,推动了大模型为代表的人工智能前沿技术赋能千行百业,推动社会经济高质量发展。无涯·问知是一款基于星环科技自研预训练模型无涯Infinity和向量数据库Hippo、图数据库StellarDB构建的企业级垂直领域多层次关系,从而进行深度的关联分析,提供了更为深入和准确的洞察结论。确保答案可验证性:无涯·问知的所有回答均提供标注信息来源,确保答案的透明度和可验证性,有效避免大模型幻觉。多模数据来源,提升回答丰富:支持用户上传各类文档后自动解析,通过文档切片及向量化技术自动为大模型注入私域知识,确保企业数据安全。灵活扩展知识库:自有知识库的构建使得企业能够根据业务发展的需要进行灵活扩展,保证了知识体系的连续性和
行业资讯
模型训练算法
学习框架如IMPALA、SEEDRL进一步提升了训练效率。大模型训练算法是当前研究热点。混合精度训练(使用FP16/FP8)大幅减少了内存占用和计算时间。参数高效微调方法(如LoRA、Adapter)允许在有限资源下调整大模型。模型并行(TensorParallelism、PipelineParallelism)和3D并行策略使训练千亿参数模型成为可能。值得关注的新方向包括稀疏训练、动态架构和神经架构搜索(NAS)等自动化机器学习技术,这些算法正在推动AI模型训练进入新的发展阶段。模型训练算法模型训练算法是机器学习和深度学习的核心驱动力,决定了模型如何从数据中学习并优化其性能。随着人工智能技术的快速发展,训练算法也在不断演进,形成了丰富多样的方法体系。监督学习算法是最经典和广泛应用的一类。梯度下降法及其变种(如随机梯度下降SGD、动量法、Adam、AdaGrad等)构成了神经网络训练的基础。这些优化算法通过计算损失函数对参数的梯度,沿着误差减小的方向调整模型权重。卷积神经网络(CNN)通常使用交叉熵损失函数配合Adam优化器,而循环神经网络(RNN)则更适合使用RMSprop来缓解梯度消失问题。近年来出现的LAMB、NovoGrad等优化器专门针对大模型训练进行了优化

行业资讯
法律大模型
法律大模型是专门针对法律行业设计的大型预训练人工智能模型,这类模型基于海量的法律文本数据进行训练,包括法律法规、司法案例、专业文献等,旨在理解和处理复杂的法律问题。它们通过微调以提高在处理法律问答、文本生成、案例分析等任务时的专业性和准确性。大模型的应用有助于加速司法决策过程,提高判决的一致性和公正性,并为非专业人士提供易于理解的法律信息。在实际操作中,法律大模型可以辅助进行法规查询、案例分析、合同审查等工作,从而减轻专业人员的工作负担,并促进法治社会的发展。星环科技无涯·问知(InfinityIntelligence),是一款基于星环大模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。

行业资讯
政务大模型产品
政务大模型:开启数字政府新时代政务大模型的崛起政务大模型是基于大规模数据训练和深度学习算法构建的人工智能模型,专门针对政务领域的复杂业务和多样需求进行优化。它能够理解和处理政务领域的各类信息,包括政策文件、法律法规、业务数据等,为政府提供智能化的决策支持和高效的服务。与传统政务信息化系统相比,政务大模型具有更强的学习能力和适应性,能够快速应对不断变化的政务需求和复杂的社会问题。丰富多元的应用场景(一)政务服务领域在政务服务领域,政务大模型的应用正深刻改变着传统的办事模式,为企业和群众带来了极大的便利。在政策解读方面,政务大模型也发挥着重要作用。以往,政策文件往往专业性较强,普通群众理解起来、公共安全等多个方面。政务大模型凭借其强大的数据分析和智能决策能力,为城市治理提供了有力的支持。在环境监测领域,政务大模型可以实时监控环境质量,对空气质量、水质、噪音等各项指标进行综合分析。一旦发现环境办公领域政务大模型的应用,也为政府内部办公带来了智能化的变革,有效提升了办公效率和协同能力。在智能文档处理方面,通针对公文撰写等细分场景,提供材料写作、AI续写、AI润色、自定义风格写作等功能,显著

行业资讯
AI大模型
AI大模型,又称为大规模AI模型、大型神经网络模型,是指参数数量庞大的人工智能模型,通常由数以亿计的参数组成。这些模型通常由深度学习算法训练而成,具有相对较高的准确性和复杂性。随着硬件计算能力的不断提升,以及训练数据集的不断扩大,AI大模型的应用和研究越来越受到关注。AI大模型具有以下几个特点:高度复杂性:AI大模型拥有大量的参数,可以对更加复杂的问题建模和学习。相比于传统的机器学习算法,大模型通常能够更好地表示和捕捉数据中的细节和特征。准确性提升:由于参数数量较多,大模型通常能够更好地适应和拟合数据集,从而提高预测和分类的准性。资源要求高:由于大模型包含大量参数,其训练和推理过程通常需要较高的计算资源和存储空间。这也限制了大模型的广泛应用,只有拥有足够的计算资源的组织和个人才能充分利用大模型的潜力。数据隐私和安全问题:大模型通常需要海量的数据用于练,这意味着在使用大模型时需要处理大量的用户数据。这对于数据隐私和安全提出了挑战,需要合理的数据使用和保护措施。AI大模型在许多领域都有着广泛的应用。例如,在自然语言处理领域,大模型能够实现更加准确和流畅的文本生成、机器翻译和问答系统;在

行业资讯
数据挖掘算法平台
来说,数据挖掘算法平台是一个集成了各种数据挖掘技术和工具的软件系统。它提供了一种统一的接口,使得用户能够方便地使用各种算法和模型来处理数据,而无需深入了解每个算法的复杂细节。一般而言,数据挖掘算法平台和准确性。以分析学生的学习成绩为例,学生的考试分数、学习时间等可能是重要特征,而学生的头发颜色等与学习成绩无关的信息就可以被剔除。模型构建环节,用户可以根据自己的需求选择合适的算法,如决策树、神经网络、支持向量机等,来构建数据挖掘模型。不同的算法适用于不同类型的数据和问题,就像不同的工具适用于不同的工作一样。例如,决策树算法适用于分类问题,能够直观地展示数据的分类规则;神经网络则擅长处理复杂的大盘点数据挖掘算法平台丰富多样,不同类型的平台适用于不同的场景和数据挖掘任务。下面将为大家介绍几种常见的数据挖掘算法平台类型。基于规则的算法平台基于规则的算法平台通过定义一系列明确的规则来发现数据中的处理,以提高处理速度。另一方面,平台还需要不断优化算法,提高算法的效率和准确性,以应对复杂的数据结构和多样化的应用需求。在处理高维数据时,传统的算法可能会面临维度灾难的问题,导致计算效率低下和模型性能

行业资讯
AI和大模型
的能力和应用范围:大模型通过预训练和微调,能够处理多种任务,从语言翻译、文本摘要到图像识别和生成,极大地扩展了AI的应用范围。AI技术的进步使得大模型训练成为可能:随着计算能力的提升和算法的优化,如AI(人工智能)和大模型(LargeModels)之间的关系是密切且相互促进的。大模型是AI领域的一个重要分支,它们的发展和应用正在推动AI技术的进步,并在多个领域产生深远影响。同时,AI的总体目标和原则也指导着大模型的设计和应用。AI的发展推动了大模型的兴起:随着AI技术的进步,特别是深度学习的发展,研究人员开始探索更大、更复杂的模型,以处理更复杂的任务和数据集。这些模型因为参数数量巨大而得名“大模型”。大模型是AI的强力工具:大模型因其庞大的参数量和深度学习能力,能够捕捉和学习数据中的复杂模式和关系,这使得它们在自然语言处理(NLP)、计算机视觉、语音识别等领域表现出色。大模型提升了AI分布式训练、模型并行、混合精度训练等技术,使得训练具有数十亿甚至数千亿参数的大模型成为可能。大模型对AI的挑战:大模型需要大量的数据和计算资源,这对数据隐私、能源消耗和模型解释性提出了挑战,也是AI领域
猜你喜欢

行业资讯
边缘计算平台
在边缘计算领域,星环科技研发了边缘计算平台Sophon。Sophon是解决多模态数据集成和治理过程中的边缘化、智能化的云端-边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云-边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。Sophon在智能制造、智能安防、智能工地、智能交通、智能城市、智能校园、智能加油站等城市治理、设备可预测性维护等云边一体场景有着广泛的应用。当前边缘计算作为产业数字化转型核心技术已形成共识,我国也高度重视边缘计算的发展,积极推进边缘计算在工业互联网等多个领域的技术、标准与产业发展。星...

行业资讯
数据底座解决方案实践应用
星环科技数据底座方案已在多个场景落地应用:广西某水电企业工业大数据生态云平台按照“统一规划、统一设计、统一建设”原则开展适应电力能源需求的“云-雾-端”多级、多云协同云计算架构设计。形成电力能源企业计算云、存储云、网络云、安全云等多云架构体系。打造包含智慧运营中心、设备状态诊断中心、安全应急中心、气象资源中心、智慧营销中心与智慧电厂的核心智慧化平台,实现数字化业务管控、智慧化企业经营和生态化商业服务的完整生态,实现企业的数字化转型。工业大数据生态云平台实施分为平台构建、数据资产治理实施与基础门户建设三个部分。其中IaaS层提供计算资源、存储资源、网络资源等基础设施服务;PaaS层由容器云、微服务治理、DevOps、敏捷开发平台、大数据平台、数据资产管理、统一应用门户等组成,为上层智慧企业应用提供基础能力平台的支撑,未来可进一步扩展人工智能平台、元宇宙、区块链、数字孪生等新技术应用平台;SaaS层应用提供数字化业务管理、智慧化企业运营管控、生态化商业服务等应用,并基于统一应用门户为用户提供交互服务。新能源集控中心是实时数仓在新能源方面的应用,跟水电比较像,比如区域监控中心一体化大数据应用...

企业选择合适的图数据库需要考虑多方面的因素,包括以下几点:数据集规模:如果需要处理大规模的图形数据,应选择支持水平扩展和集群部署的图数据库。查询需求:不同的图数据库对数据类型和查询需求的支持程度有所不同,应根据实际需求选择。性能和可扩展性:不同的图数据库性能和可扩展性有所不同,应选择性能和可扩展性良好的图数据库。支持程度:选择使用支持程度好的图数据库,可以得到更好的技术支持。维护和成本:选择维护成本低、方便使用的图数据库,能够降低维护成本和使用难度。在选择图数据库时,应根据具体需求进行综合分析、评估和选择。星环科技分布式图数据库是国内比较知名的图数据库产品之一。星环分布式图数据库StellarDB星环科技在图计算领域深耕多年,自主研发了分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB在数据导入、多跳查询和图算法性能方面实现了数倍升级,同时在易用...

行业资讯
国内隐私计算平台
星环SophonP²C是企业级隐私计算平台,拥有多项性能及安全认证,平台支持不同场景的隐私计算需求,包括横纵向联邦学习、多方安全计算、基于差分隐私的数据发布、匿踪查询等,为多方数据安全协作提供完整的平台底座。SophonP²C可用于解决跨组织协作时无法安全利用各方数据的难题,助力数据流通应用的合法合规。在保障隐私的前提下,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期,提供多种开箱即用的工具,方便用户进行数据处理、分析、特征工程等工作,可快速进行多方数据统计、分析建模和应用工作。平台拥有的多种适应不同安全和通讯环境的加密安全手段和通信架构,为跨组织的数据协作提供安全、可靠、高效的平台支持。分布式隐私计算平台SophonP²C产品优势:支持多种隐私计算框架,平台易用易部署1.采用同态加密、差分隐私、秘密分享、不经意传输等隐私技术,覆盖联邦学习(FL)、多方安全计算(MPC)、匿踪查询(PIR)、隐私求交(PSI)等多种隐私计算功能。2.支持大数据规模的隐私计算场景,支持亿级数据进行联邦学习、多方安全计算和隐私求交。3.提供页面可视化安装部署,并支持实体部署、容器部署、...

行业资讯
构建城轨交通数据底座
利用星环科技数据云平台TDC打造的基于PaaS平台的绿色轨道交通线网指挥中心,为轨交集团打造技术中台、数据中台、模型中台、业务中台。与传统模式相比,PaaS模式采取集约化部署,能大大提高资源利用率;可为开发人员提供隔离的租户环境,灵活选择所需大数据与AI能力,进行探索分析和数据挖掘。技术中台:统一资源管控,灵活资源分配,快速资源申请与部署。数据中台:全量数据接入;面向应用主题的指标计算与规范化数据存储。模型中台:基于人工智能、深度学习的算法模型,支撑业务分析、评估、与决策。业务中台:采用微服务架构,串联系统功能,打通整合业务应用。通过采集实时能耗、电能质量、设备状态等实时数据和客流信息、列车运营信息、基础信息等非实时数据,基于星环科技智能分析工具Sophon进行建模预测,支撑上层能耗统计与监测应用、能耗综合评估应用,实现行车调度精细化,促进轨道交通绿色低碳发展。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。通过为企业搭建数字化转型的数字底座,星环科技助力政府、金融、能源、...

行业资讯
图数据库有哪些?
图数据库是一种用于处理图形数据的特殊类型的数据库。它们旨在存储和管理关系和连接,具有比其他类型的数据库更强大的能力。目前国内有众多优秀图数据库产品,星环科技图数据库产品StellarDB其中之一。TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。TranswarpStellarDB优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的...

行业资讯
数据安全出境解决方案
近年来,随着数字经济的蓬勃发展,数据跨境活动日益频繁,数据处理者的数据出境需求快速增长。为规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全、自由流动,国家互联网信息办公室公布了《数据出境安全评估办法》,9月1日起施行。《数据安全出境评估办法》构建了我国数据出境安全评估的制度,然而企业在具体落地方面,还存在诸如数据分类分级;重要数据识别、存储、管理;数据安全监督;敏感数据防泄露等实际困难,国内迫切需要落实数据安全出境的企业。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,构建明日数据世界。在数据安全与流通方面,星环科技具备一系列产品和解决方案。针对有数据跨境需求的企业,星环科技可以提供一套可落地的企业数据安全出境合规解决方案,为企业提供数据跨境一站式服务,助力企业高效、合规的开展数据流通业务。以某智能车企云端车联网全球化数据安全合规案例为例,针对客户面对的系统内存在大量个人隐私数据,但是没有资产地图;缺乏数据分类分级策略;缺乏个人隐私数据使用、流转的监测与防护;需要敏感资产风险评...

行业资讯
数字政府建设
近日,领先的IT市场研究和咨询公司IDC发布2022年数字政府百强榜,梳理出数字政府领域领先的技术供应商,评估了技术提供商的市场能力及市场份额。星环科技作为企业级大数据基础软件开发商,成功入选IDC数字政府百强榜“大数据及数据治理”模块。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。在政府领域,星环科技通过智慧政务数字底座为政府数字化转型建设提供计算、存储、算法等基础能力支撑,归集业务数据,优化业务流程,治理出有价值的数据资源,进行专题分析沉淀数据资产,服务部门之间数据共享与业务协同,服务领导决策与政策制定,服务公众、企业便捷办事。公司产品已被多个部委或省市机关部门使用,助力构建数字化政府,提升治理效率。比如星环科技基于数据云平台TDC为建设上海市数据资源平台提供了底层支撑,将70多个委办局以及16个区县业务库的结构化和非结构化数据进行归集,构建三级数据共享交换体系,保障数据安全,支撑“一网通办”等数据服务能力。此外,根据不...

行业资讯
数据库国产化替代
数据库作为提供数据存储与处理能力的基础软件,是信息系统的基础、信息安全的基石,因此,数据库自主可控和国产化替代已经刻不容缓。兼容性是国产化替代关键,自研数据库更具潜力Oracle数据库发展较早,在国内市场内占领了一定先机,企业经过信息化的长期积累和革新,基于Oracle开发了大量的系统业务。为了能够适配新的国产数据库产品,必须对应用代码进行大量修改,各数据表的数据类型、函数、语法规则需要进行系统、全面的改造,这就要求新的国产数据库对原有数据库能够有很好的兼容性支持,降低迁移的代码改造成本。Oracle经过多年的发展,在SQL语言、性能、实例形态、容灾方案等方面有很多积累扩展。若要实现Oracle数据库的国产化替代,除了要能够提供在性能、容灾能力、安全能力等方面全方位提供对等的能力,首先要解决的就是如何兼容Oracle的大量SQL方言,尤其是Oracle的PL/SQL这一独特的广受欢迎的语法体系。中国信通院《数据库发展研究报告》中表示,“国内关系型数据库产品中多数是基于MySQL和PostgreSQL二次开发的”。因此,这些产品对MySQL、PostgreSQL兼容性较好,但没有体系化的...

行业资讯
国产时空数据库有哪些?
随着科技和信息技术的快速发展,时空数据已经成为重要的技术支撑和决策工具。与此同时,国内也出现了不少优秀的国产时空数据库产品,不仅在空间分析、时序分析等方面实现了卓越的表现,同时也在存储管理、可视化展示等方面有着出色的成果。不少时空数据库产品已实现了高可靠性、高性能和高稳定性的功能,在交通运输、城市规划、GIS和物流供应链等领域都有着广泛的应用。其中星环科技的分布式时空数据库-TranswarpSpacture就是其中一款优秀的时空数据库产品。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。产品优势原生空间:时空数据类型,针对空间时空数据的特定优化。兼容OGC标准:提供丰富的分析函数,具备复杂分析挖掘能力。支持SQL:基于SQL完成空间分析和轨迹分析,降低产品使用门槛。兼容Po...