开发大模型
并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通
开发大模型 更多内容

行业资讯
大模型开发平台
大模型开发平台是一种为开发大规模人工智能模型而设计的综合性软件工具和基础设施环境,旨在为开发人员提供便捷、高效、全面的开发支持,以加速大模型的研发和应用落地。以下从其功能特点、技术架构、应用最优的超参数组合,提高模型的性能和泛化能力。模型评估与优化功能评估指标计算:提供多种评估指标,如准确率、召回率、F1值、均方误差等,用于衡量模型的性能,帮助开发人员了解模型的优缺点。模型优化工具:基于:集成了各种深度学习框架和算法库,为模型开发提供基础的算法支持。平台服务层:提供数据管理、模型训练、模型评估、模型部署等核心服务,以及用户管理、任务调度、日志监控等辅助服务。应用层:面向用户的应用界面,提供可视化的操作界面和API接口,方便用户进行数据处理、模型开发、模型部署等操作。应用场景自然语言处理领域:用于开发智能聊天机器人、机器翻译系统、文本生成模型等,帮助计算机理解和处理人类语言。计算机视觉场景等方面进行具体介绍:功能特点数据管理功能数据收集与标注:能够从多种来源收集数据,包括网络、数据库、文件系统等,并提供数据标注工具,方便对数据进行分类、标记等预处理,为模型训练提供高质量的数据。数据存储与

行业资讯
大模型应用开发平台
大模型应用开发平台是基于人工智能和大数据技术的应用程序开发平台,可以帮助开发人员快速构建和部署高质量的大模型应用。大模型应用开发平台通常提供一系列工具和框架,使用户能够轻松处理大规模的数据,并构建和训练复杂的深度学习模型。为开发人员提供了一个集成环境,可以大大简化大模型的构建和训练过程。大模型应用开发平台提供各种应用工具和接口,使开发人员可以方便地构建、训练和部署大模型应用,从而大大加快了开发流程。提供可视化界面,帮助用户轻松构建模型,提供了预训练模型库,用户可以根据需要轻松引用,节省大量时间和精力。大模型持续开发和训练工具为了满足企业应用大语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的大模型持续开发和训练工具——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来的、具备“新型人机交互”且“敏捷可持续迭代自身业务特点的领域大语言模型。在模型训练微调阶段,SophonLLMOps工具链需要覆盖训练数据开发、推理数据开发和数据维护等工作,对大语言模型所涉及的原始数据、样本数据和提示词数据进行清洗、探索

行业资讯
大模型开发管理平台
解锁大模型开发管理平台:AI时代的“魔法工坊”大模型开发管理平台介绍概念:大模型开发管理平台是一种集成化的工具系统,旨在辅助开发者高效地进行大模型的开发、训练、优化、部署以及后续的管理维护工作。它整合了算力资源、数据管理、模型训练框架、评估工具等一系列要素,为大模型从构思到实际应用提供全流程支持。功能特点多样化模型支持:集成业界主流开源大模型,开发者无需从头构建模型,可选择合适的预训练模型进行用于大语言模型的提示词;支持检索增强生成,智能体开发等,助力构建更智能的大模型应用。模型运维管理:对大模型进行全生命周期管理,包括模型版本控制、性能监测、故障诊断与修复等,确保模型在生产环境中的稳定运行和持续优化。优势降低技术门槛:即使是缺乏深厚机器学习专业知识的人员,也能借助平台低代码甚至无代码的操作,参与到大模型开发应用中,加速企业数字化转型和创新。提升开发效率:一站式的工具和功能,减少了在不同工具和平台间切换的时间,自动化的流程和丰富的模板,进一步缩短开发周期。保障模型质量:完善的模型评估和优化机制,以及对算力资源的合理调配,有助于训练出高性能、高稳定性的大模型。应用场景智能客服:利用大

行业资讯
大模型开发应用
大模型开发应用是当前人工智能领域的热点,涵盖从基础开发到在多行业多场景应用的诸多方面,以下是相关介绍:大模型开发数据收集与预处理数据收集:从多种渠道收集海量数据,包括网页、社交媒体、学术文献、企业内部数据等。例如,开发一个通用的语言大模型,可能需要收集数十亿甚至数万亿字的文本数据。数据预处理:对收集到的数据进行清洗、去重、标注等处理,提高数据质量。如去除包含错误、重复或不相关信息的数据,对文的文本描述或条件生成逼真的图像,可用于艺术创作、游戏开发等。其他领域医疗领域:辅助医生进行疾病诊断、药物研发等。例如,大模型可以通过分析大量的医疗影像和病历数据,帮助医生更准确地诊断疾病,提高诊断效率本数据进行分词、词性标注等操作,为后续训练提供优质数据。大模型应用自然语言处理领域智能客服:大模型可理解用户咨询的自然语言问题,并生成准确、友好的回答,自动处理大量常见问题,提高客服效率和用户满意度。例如,阿里云的智能客服系统利用大模型技术,能够快速准确地处理海量客户咨询。机器翻译:将一种语言的文本准确地翻译成另一种语言,大模型在处理复杂句子结构和多语言翻译方面表现出色。如谷歌翻译利用大模型不断提升

行业资讯
大模型应用开发平台
大模型应用开发平台是指那些专门设计用于构建、训练和部署大型深度学习模型的软件平台。这些平台提供了一系列的工具和服务,使得开发者能够更高效地开发和部署大模型应用。大规模数据处理能力:大模型应用开发平台能够处理和训练大规模数据集,这些模型通常参数量巨大,通过预训练和自监督学习等技术进行训练,能够处理复杂的任务并提升性能。多样化的应用场景:平台支持多种应用场景,如自然语言处理(包括机器翻译、语言理解模块化设计,每个模块都有清晰的功能和接口,开发者可以根据需求选择性地使用这些模块来构建自己的AI应用。数据集管理功能:提供强大的数据集管理功能,支持数据的导入、处理和版本控制,以便于模型训练和优化。可视化的Prompt编排:平台提供可视化工具,帮助开发者编排和管理Prompt,以提高模型的响应质量和准确性。应用运营工具:提供应用运营工具,帮助开发者监控应用性能,收集用户反馈,并进行必要的调整和优化。支持多种大型语言模型:平台支持多种大型语言模型,并与多个模型供应商合作,确保开发者能根据需求选择最适合的模型。性能调优与服务部署:平台提供性能调优工具,帮助开发者诊断分析和调试应用流,同时支持一键部署至生产环境,实现高效运营。

行业资讯
大模型开发
大模型开发是指基于大规模数据集或知识库,通过深度学习等技术手段训练出具有强大表现力和泛化能力的模型。随着人工智能技术的快速发展,大模型开发已经成为自然语言处理、计算机视觉、语音识别等领域的重要研究方向。大模型开发具有以下特点:参数规模大:大模型通常拥有数百万甚至上亿个参数,需要大规模的算力和数据来训练。训练数据量大:大模型需要大量的训练数据来达到较好的效果,一般需要数百万甚至上千万的样本。计算能力强:大模型需要高性能计算硬件和优化软件来加速训练过程,例如GPU和分布式计算系统。复杂度高:大模型的训练过程中需要处理海量的数据和参数,计算复杂度高,需要采用高效的优化算法和训练技巧。大模型开发需要跨学科的技术积累和工程实践能力,包括数据清洗、数据处理、模型设计、训练技巧、调优方法等方面。同时,大模型开发也需要强大的计算资源和研发团队的支持。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型

行业资讯
大模型开发和训练工具
为降低客户训练及微调大模型的门槛,星环科技发布了大模型开发和训练工具SophonLLMOps,为用户打通了从数据接入和开发、提示工程、大模型微调、大模型上架部署到大模型应用编排和业务效果对齐的全链路流程,从而实现针对大模型的“数据和分析的持续提升。便利且规范化的提示工程和数据管理,保障训练数据质量:支持提示模版管理、提示验证评估、提示数据标注以及数据质量控制。可通过人工标注、半自动标注、自动标注等方式来完成数据标注任务。支持监控、更新和维护数据集,以保证数据质量和时效性。可通过数据质量检查、数据版本控制、自动化维护等方式来实现训练和推理数据管理。高度工程化及封装的流程,让大模型训练和微调变得简单易上手:依托于内置的大模型训练模板,为业务用户提供更方便快捷的大模型训练和微调流程。业务用户只需少量必要的操作,如选择基础模型、配置训练数据集路径、设定学习率等,即可快速启动训练和微调任务。此外,还提供智能化配置工具,避免资源错配、计算产生NaN值等典型微调失败引起的损失。多版本多种大模型,都可以在一个平台上统一纳管:在大模型上架、体验和部署方面,SophonLLMOps加强了对预训练大模型和

行业资讯
AI大模型应用开发
AI大模型应用开发是一个综合性的过程,涉及多个关键步骤和技术要点。1.明确应用场景和需求场景分析:深入研究目标行业和应用场景,例如医疗领域的辅助诊断、金融领域的风险评估、教育领域的个性化学习辅助等模型的性能。5.应用开发接口设计:设计应用程序接口(API),以便其他系统或软件能够方便地调用大模型的功能。API的设计应该遵循简单、稳定、安全的原则,并且要考虑到数据传输的效率和格式。前端开发:如果是面向用户的应用,需要开发用户界面(UI)。根据应用场景和用户体验需求,设计简洁、直观的界面,方便用户输入和获取信息。后端开发:搭建后端服务,处理业务逻辑和数据存储。后端需要与大模型进行交互,将用户输入的数据发送给大模型进行处理,并将大模型返回的结果进行解析和处理,然后返回给前端或其他系统。6.性能测试与优化性能测试:使用测试集对开发好的应用进行性能测试,评估模型的准确性、响应时间、吞吐量等。了解场景中的业务流程、用户需求和痛点,确定大模型可以发挥作用的具体环节。需求定义:明确应用的功能需求,如文本生成、翻译、分类,还是问答系统等;性能需求,包括准确率、响应时间、吞吐量等;以及用户体验需求

行业资讯
什么是大模型开发?
大模型开发是指在人工智能领域构建和训练大规模深度学习模型的过程。这些模型通常拥有数百万到数十亿的参数,能够在自然语言处理、计算机视觉、语音识别等任务上展现出卓越的性能。开发大模型涉及数据收集与预处理、模型设计、训练、评估与优化以及部署与维护等多个关键步骤。数据收集与预处理:首先,需要收集大规模的数据集,这些数据集可以是文本、图像或语音等。数据的质量和多样性对于训练出高性能的大模型至关重要。预处理阶段可能包括清洗、标注和格式化数据。模型设计:根据任务需求选择合适的模型架构。设计时需要考虑模型的深度、宽度以及如何平衡计算效率和性能。训练:使用大规模计算资源(如GPU集群)对模型进行训练。训练大模型部署到实际应用中,并持续监控其性能。随着新数据的出现或业务需求的变化,可能还需要定期更新和重新训练模型。星环科技在这一领域具有丰富的经验,能够提供从数据准备到模型部署的全流程支持,确保大模型在实际应用中发挥效能。过程涉及调整模型参数以最小化损失函数,这通常是一个迭代过程,需要大量的时间和计算力。评估与优化:在验证集上评估模型性能,根据结果进行调优。这可能包括调整超参数、增加或减少层的数量等。部署与维护:将训练好的
猜你喜欢

行业资讯
什么是时空数据库?
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
分布式隐私计算平台
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...

行业资讯
常见的图数据库应用场景有哪些?
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...

行业资讯
国产化替代升级实践
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...

星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...

行业资讯
基于数据安全网关的跨境安全流通方案
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...

行业资讯
图数据库有哪些特点?
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...

行业资讯
金融、医疗知识图谱平台
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...

行业资讯
数据要素安全流通服务
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...

行业资讯
银行图数据库应用场景有哪些?
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...