大模型训练低成本

模型训练平台采购采购模型训练平台是企业实现AI战略的重要决策,需要综合考虑技术、财务和运营等多方面因素。一个明智的采购决策可以显著提升AI研发效率并降低成本。从技术角度看,采购模型训练平台首先要评估计算能力需求。这包括GPU/TPU的数量和型号(如NVIDIAH100vsA100)、内存容量(需支持模型参数)、存储系统(高速NVMeSSD用于海量数据)和网络基础设施(如AzureML等云平台提供弹性资源,适合快速启动和可变负载,但长期成本较高。本地部署需要前期大量资本支出,但适合数据敏感和长期稳定负载的场景。混合模式正在兴起,允许在云中爆发训练同时保持本地基础设施。供应商评估应关注:硬件性能基准测试结果、软件栈的完整性和易用性、技术支持响应能力、成功案例参考以及未来升级路径。价格模型也需仔细分析,包括初始购置成本、维护费用、能耗和空间需求等总拥有成本(TCOInfiniBand确保节点间高速通信)。平台应支持主流深度学习框架(TensorFlow、PyTorch)和分布式训练技术。云服务与本地部署的选择是核心决策点。AWSSageMaker、GoogleVertexAI和

大模型训练低成本 更多内容

以及专业人员的维护费用等。小模型:轻量化和高效性:参数量少,计算需求训练和推理速度快,可在资源有限的设备和环境中使用,如移动设备、嵌入式系统等,适合对实时性要求高的应用,能够快速响应。低成本训练模型通常指使用规模数据和强大的计算能力训练出来的具有大量参数的模型,是“数据+算力+强算法”结合的产物,参数量可达数十亿甚至数千亿。小模型参数量相对较少的深度神经网络模型,计算需求,体积小,训练和推理速度快。特点模型:强大的性能和泛化能力:能够更精确地拟合复杂的数据分布,在自然语言处理、图像识别、语音识别等复杂任务上展现出更出色的性能和准确度,可适应一系列不同类型的任务。高预测能力:能在数据集上捕捉更多细节和模式,从而提供更准确的预测和决策支持。训练和推理成本高:由于参数量巨大,训练时间长,需要大量的时间和计算资源投入,对硬件要求高,部署和维护成本也较高,包括计算资源、存储空间和推理成本低,对资源有限或预算紧张的用户更具吸引力,易于部署和维护。可解释性相对较好:结构相对简单,更容易理解和解释其决策过程和结果。
模型微调与训练模型微调与训练在技术实现上存在本质区别:数据准备阶段,基础训练需要构建海量预训练语料库,通常达到TB级别;而微调只需准备精炼的领域数据,规模往往在GB级。研究显示,高质量的小规模微调数据效果可能优于质量的数据。计算资源配置差异显著,基础训练需要数百张加速卡组成的计算集群,采用复杂的并行训练策略;微调则可以在单个多卡服务器上完成,使用参数高效方法。算法实现上,基础训练采用自问答任务上,微调模型的准确率比基座模型高25个百分点。部署要求也有差异,基础训练产出的模型需要专用推理服务器;微调后的模型可以通过量化压缩等技术轻量化。某边缘计算场景中,经过量化的微调模型体积缩小75%,推理速度提升3倍。监督学习目标,如语言模型的掩码预测;微调则使用监督学习,最小化特定任务的损失函数。实验表明,合适的微调策略可以使模型在专业领域表现提升40%。训练过程监控重点不同,基础训练关注损失曲线平滑度和梯度分布;微调则更关注验证集上的指标变化,防止过拟合。某研究团队通过早停机制,将微调时间缩短30%而不影响效果。模型输出方面,基础训练产出的基座模型具有通用能力;微调后的模型则针对特定场景优化。测试显示,在医疗
模型训练方法包括预训练、指令微调、强化学习、模型并行与分布式训练、优化器与学习率调整以及模型压缩与量化等,各环节协同助力模型训练与优化。以下是一些常见的模型训练方法:预训练数据收集与预处理:收集海量的文本、图像、语音等多模态数据。对数据进行清洗,去除不相关、质量、重复的数据,纠正错误等;进行分词、标记化等操作,将文本转化为模型可处理的格式。预训练任务设计:常见的预训练任务有语言模型任务好的指令集对预训练模型进行微调,通过有监督学习的方式,让模型学习到针对特定任务的最优参数。在微调过程中,通常会使用较小规模的高质量标注数据,以降低训练成本并提高模型在特定任务上的性能。强化学习人类反馈强化学习(RLHF):让人类对模型生成的结果进行评价和打分,基于这些反馈信息训练一个奖励模型。奖励模型学习预测生成结果的评分,然后在强化学习过程中,利用奖励模型的输出作为奖励信号,引导模型生成更符合:当模型规模过大,单个设备无法容纳整个模型时,将模型的不同层或部分分配到不同的设备上进行计算,设备之间需要进行通信以传递中间结果,从而实现对规模模型训练。混合并行:结合数据并行和模型并行的方法
模型训练框架是深度学习领域的重要组成部分,尤其对于处理规模语言模型。这些框架通过优化算法、数据处理和硬件利用,提高了训练效率并降低了成本模型设计语言模型通常采用Encoder-Decoder评估与优化在预训练和微调之后,通过验证集或测试集评估模型性能。如果表现不佳,则可能需要调整超参数、增加数据量或更改架构。随着研究的进步和新框架的发展,语言模型正变得越来越有效且实用。然而,面对计算资源架构,以实现理解和生成任务的兼顾。训练过程训练过程涉及获取大量样本集(如预训练阶段),对样本进行Token化,并使用分布式策略进行并行化处理。此外,使用动态精度缩放和梯度累积可以进一步提高效率。模型限制时仍需继续探索如何降低开销同时保持性能水平。未来的规模深度学习工作将继续关注提高效率的同时保持或增强准确性,并寻找适用于各种应用的有效解决方案。
行业资讯
模型训练
模型训练模型训练过程中的关键环节。让模型学习到广泛的语言知识、语义理解能力和各种模式,以便在后续的微调或直接应用中能够更好地适应各种具体任务,如文本生成、问答、翻译等。关键步骤数据收集与预处理收集海量数据:从多种渠道收集大量的文本数据,来源涵盖互联网文章、书籍、新闻报道、学术论文、社交媒体等,以覆盖各种领域和主题,为模型提供丰富的语义信息。例如训练一个通用语言模型,可能会收集数十亿甚至规模数据中发现模式和规律。常见的预训练任务包括语言模型任务,即预测文本序列中的下一个单词或字符;以及掩码语言模型任务,随机掩盖输入文本中的一些单词或字符,让模型预测这些被掩盖的内容。数据源采样与平衡上百亿的文本数据。数据清洗:去除数据中的噪声,如广告、重复内容、格式错误、质量或不完整的文本等,保证数据的质量和纯净度,使模型能够更有效地学习有用信息。分词与标记化:将文本切分为便于模型处理的序列。同时,可根据需要扩充词表,如添加常见汉字等,以提高模型对特定语言或领域的适应性。模型选择与架构搭建选择合适的预训练模型基座:模型架构在自然语言处理任务中表现出色,具有高效的特征提取和表示能力,能够为预
运行、稳定可靠以及安全可控,成为了摆在我们面前的重要课题。良好的管理与运维能够保障模型的性能,提高其准确性和效率,同时降低成本,为用户提供更好的体验。模型管理与运维的核心环节(一)模型训练管理模型个性化推荐引擎到自动化客服,模型的应用无处不在,展现出巨大的潜力和影响力。随着模型在各个领域的广泛应用,其管理与运维的重要性日益凸显。模型训练和部署需要消耗大量的计算资源和时间,如何确保模型的高效训练模型开发的核心阶段,其管理涉及多个关键要点。在资源调配方面,由于模型训练需要消耗大量的计算资源,如GPU、CPU等,合理分配这些资源至关重要。参数设置则直接影响模型的性能和训练效果。以学习率多样性和代表性,涵盖各种不同的场景和情况,以避免模型出现偏差。(二)模型部署策略模型部署是将训练好的模型应用到实际生产环境的关键步骤,不同的部署方式各有优缺点及适用场景。云端部署是目前较为常见的方式解锁模型管理与运维:通往高效智能的密钥模型:重塑数字世界的新引擎在当今数字化浪潮中,模型已成为驱动创新和发展的核心力量,正深刻地改变着我们的生活与工作方式。从智能语音助手到图像识别系统,从
模型训练语料是指用于训练模型的一系列文本、语音或其他模态的数据。以下是关于模型训练语料的具体介绍:来源互联网公开数据:如新闻网站、博客、论坛、社交媒体等平台上的文本内容,具有规模、更新快,具有权威性和准确性,对于特定领域的模型训练具有重要价值,如训练法律模型时,政府发布的法律法规文件是重要的语料来源。企业内部数据:企业在日常运营过程中积累的大量数据,如客户数据、业务文档、交易记录等,经过整理和加工后可用于训练特定行业的模型,如金融机构可利用客户交易数据训练金融风险预测模型。特点规模:通常需要数十亿到数千亿个tokens,以提供足够的信息让模型学习语言的模式和规律。多样性:来自实际情况的输出。作用决定模型性能:高质量、全面、多样的语料库能够训练出性能更好、泛化能力更强的模型,而质量的语料可能导致模型学习到错误的信息或者产生误导性的输出。塑造模型知识与认知:语料中包含的知识和信息决定了模型对世界的理解和认知程度,丰富的语料可以让模型掌握更广泛的知识和更深入的专业领域知识。影响模型应用效果:不同领域和应用场景需要特定的语料来训练模型,以确保模型能够准确理解和处理相关问题,提供符合行业标准和法规要求的有效服务。
模型语料训练语言模型构建和优化过程中的关键环节,以下是其具体介绍:训练前的准备数据收集:从多种来源广泛收集数据,如互联网的新闻、博客、论坛,学术文献库,书籍,以及特定行业的专业数据库等。收集,通常采用词嵌入技术,将单词映射到维向量空间中。模型训练:将向量化的语料输入到选定的模型架构中,通过大量的计算和迭代,不断调整模型的参数,使模型能够学习到语料中的语言知识、语义理解和语言生成能力。根据评估结果,对模型进行优化和调整,如调整超参数、增加或减少训练数据、改进模型架构等,以提高模型的性能和泛化能力。训练后的处理模型压缩和优化:训练好的模型通常具有庞大的参数和较高的计算复杂度,为了编码等。数据标注:对于一些需要特定任务训练模型,如情感分类、命名实体识别等,需要对数据进行标注。标注可以由人工完成,也可以采用半自动化的方式,利用一些预训练模型和工具进行辅助标注。标注的质量和准确性对模型训练效果至关重要。训练过程选择训练框架和算法:根据模型的特点和需求选择合适的框架。同时,选择适合的训练算法,以优化模型的参数。将语料向量化:把清洗和标注好的文本语料转化为模型能够处理的向量形式
行业资讯
模型训练
:重复前向传播和反向传播过程,直到达到预定的迭代次数或满足停止条件。计算资源需求高:模型训练需要大量的GPU资源和存储空间。数据质量和偏见问题:质量的数据或存在偏见的数据会影响模型性能和公平性。模型模型训练是指在规模数据集上利用高性能计算资源,对拥有大量参数的深度学习模型进行训练的过程。模型通常指的是拥有数百万到数十亿参数的深度学习模型。这些模型通过处理大量数据,能够学习到复杂的模式和泛化能力:如何确保在未见过的数据上表现良好是一个持续的研究课题。模型训练是现代AI研究的核心组成部分,它不仅推动了技术的进步,也带来了新的挑战。星环语言模型运营平台-SophonLLMOps为了帮助企业用户基于模型构建未来应用,星环科技推出了模型持续提升和开发工具SophonLLMOps,实现领域模型训练、上架和迭代。SophonLLMOps服务于模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。特征,从而在各种任务上表现出色,如自然语言处理、图像识别和语音识别等。数据准备:收集和预处理大量的训练数据是第一步。这包括清洗数据、标注数据以及将其转换为适合模型输入的形式。模型设计:根据任务需求选择
数据库作为提供数据存储与处理能力的基础软件,是信息系统的基础、信息安全的基石,因此,数据库自主可控和国产化替代已经刻不容缓。兼容性是国产化替代关键,自研数据库更具潜力Oracle数据库发展较早,在国内市场内占领了一定先机,企业经过信息化的长期积累和革新,基于Oracle开发了大量的系统业务。为了能够适配新的国产数据库产品,必须对应用代码进行大量修改,各数据表的数据类型、函数、语法规则需要进行系统、全面的改造,这就要求新的国产数据库对原有数据库能够有很好的兼容性支持,降低迁移的代码改造成本。Oracle经过多年的发展,在SQL语言、性能、实例形态、容灾方案等方面有很多积累扩展。若要实现Oracle数据库的国产化替代,除了要能够提供在性能、容灾能力、安全能力等方面全方位提供对等的能力,首先要解决的就是如何兼容Oracle的大量SQL方言,尤其是Oracle的PL/SQL这一独特的广受欢迎的语法体系。中国信通院《数据库发展研究报告》中表示,“国内关系型数据库产品中多数是基于MySQL和PostgreSQL二次开发的”。因此,这些产品对MySQL、PostgreSQL兼容性较好,但没有体系化的...
随着科技和信息技术的快速发展,时空数据已经成为重要的技术支撑和决策工具。与此同时,国内也出现了不少优秀的国产时空数据库产品,不仅在空间分析、时序分析等方面实现了卓越的表现,同时也在存储管理、可视化展示等方面有着出色的成果。不少时空数据库产品已实现了高可靠性、高性能和高稳定性的功能,在交通运输、城市规划、GIS和物流供应链等领域都有着广泛的应用。其中星环科技的分布式时空数据库-TranswarpSpacture就是其中一款优秀的时空数据库产品。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。产品优势原生空间:时空数据类型,针对空间时空数据的特定优化。兼容OGC标准:提供丰富的分析函数,具备复杂分析挖掘能力。支持SQL:基于SQL完成空间分析和轨迹分析,降低产品使用门槛。兼容Po...
近年来,随着数字经济的蓬勃发展,数据跨境活动日益频繁,数据处理者的数据出境需求快速增长。为规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全、自由流动,国家互联网信息办公室公布了《数据出境安全评估办法》,9月1日起施行。《数据安全出境评估办法》构建了我国数据出境安全评估的制度,然而企业在具体落地方面,还存在诸如数据分类分级;重要数据识别、存储、管理;数据安全监督;敏感数据防泄露等实际困难,国内迫切需要落实数据安全出境的企业。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,构建明日数据世界。在数据安全与流通方面,星环科技具备一系列产品和解决方案。针对有数据跨境需求的企业,星环科技可以提供一套可落地的企业数据安全出境合规解决方案,为企业提供数据跨境一站式服务,助力企业高效、合规的开展数据流通业务。以某智能车企云端车联网全球化数据安全合规案例为例,针对客户面对的系统内存在大量个人隐私数据,但是没有资产地图;缺乏数据分类分级策略;缺乏个人隐私数据使用、流转的监测与防护;需要敏感资产风险评...
利用星环科技数据云平台TDC打造的基于PaaS平台的绿色轨道交通线网指挥中心,为轨交集团打造技术中台、数据中台、模型中台、业务中台。与传统模式相比,PaaS模式采取集约化部署,能大大提高资源利用率;可为开发人员提供隔离的租户环境,灵活选择所需大数据与AI能力,进行探索分析和数据挖掘。技术中台:统一资源管控,灵活资源分配,快速资源申请与部署。数据中台:全量数据接入;面向应用主题的指标计算与规范化数据存储。模型中台:基于人工智能、深度学习的算法模型,支撑业务分析、评估、与决策。业务中台:采用微服务架构,串联系统功能,打通整合业务应用。通过采集实时能耗、电能质量、设备状态等实时数据和客流信息、列车运营信息、基础信息等非实时数据,基于星环科技智能分析工具Sophon进行建模预测,支撑上层能耗统计与监测应用、能耗综合评估应用,实现行车调度精细化,促进轨道交通绿色低碳发展。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。通过为企业搭建数字化转型的数字底座,星环科技助力政府、金融、能源、...
星环科技数据底座方案已在多个场景落地应用:广西某水电企业工业大数据生态云平台按照“统一规划、统一设计、统一建设”原则开展适应电力能源需求的“云-雾-端”多级、多云协同云计算架构设计。形成电力能源企业计算云、存储云、网络云、安全云等多云架构体系。打造包含智慧运营中心、设备状态诊断中心、安全应急中心、气象资源中心、智慧营销中心与智慧电厂的核心智慧化平台,实现数字化业务管控、智慧化企业经营和生态化商业服务的完整生态,实现企业的数字化转型。工业大数据生态云平台实施分为平台构建、数据资产治理实施与基础门户建设三个部分。其中IaaS层提供计算资源、存储资源、网络资源等基础设施服务;PaaS层由容器云、微服务治理、DevOps、敏捷开发平台、大数据平台、数据资产管理、统一应用门户等组成,为上层智慧企业应用提供基础能力平台的支撑,未来可进一步扩展人工智能平台、元宇宙、区块链、数字孪生等新技术应用平台;SaaS层应用提供数字化业务管理、智慧化企业运营管控、生态化商业服务等应用,并基于统一应用门户为用户提供交互服务。新能源集控中心是实时数仓在新能源方面的应用,跟水电比较像,比如区域监控中心一体化大数据应用...
星环SophonP²C是企业级隐私计算平台,拥有多项性能及安全认证,平台支持不同场景的隐私计算需求,包括横纵向联邦学习、多方安全计算、基于差分隐私的数据发布、匿踪查询等,为多方数据安全协作提供完整的平台底座。SophonP²C可用于解决跨组织协作时无法安全利用各方数据的难题,助力数据流通应用的合法合规。在保障隐私的前提下,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期,提供多种开箱即用的工具,方便用户进行数据处理、分析、特征工程等工作,可快速进行多方数据统计、分析建模和应用工作。平台拥有的多种适应不同安全和通讯环境的加密安全手段和通信架构,为跨组织的数据协作提供安全、可靠、高效的平台支持。分布式隐私计算平台SophonP²C产品优势:支持多种隐私计算框架,平台易用易部署1.采用同态加密、差分隐私、秘密分享、不经意传输等隐私技术,覆盖联邦学习(FL)、多方安全计算(MPC)、匿踪查询(PIR)、隐私求交(PSI)等多种隐私计算功能。2.支持大数据规模的隐私计算场景,支持亿级数据进行联邦学习、多方安全计算和隐私求交。3.提供页面可视化安装部署,并支持实体部署、容器部署、...
企业选择合适的图数据库需要考虑多方面的因素,包括以下几点:数据集规模:如果需要处理大规模的图形数据,应选择支持水平扩展和集群部署的图数据库。查询需求:不同的图数据库对数据类型和查询需求的支持程度有所不同,应根据实际需求选择。性能和可扩展性:不同的图数据库性能和可扩展性有所不同,应选择性能和可扩展性良好的图数据库。支持程度:选择使用支持程度好的图数据库,可以得到更好的技术支持。维护和成本:选择维护成本低、方便使用的图数据库,能够降低维护成本和使用难度。在选择图数据库时,应根据具体需求进行综合分析、评估和选择。星环科技分布式图数据库是国内比较知名的图数据库产品之一。星环分布式图数据库StellarDB星环科技在图计算领域深耕多年,自主研发了分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB在数据导入、多跳查询和图算法性能方面实现了数倍升级,同时在易用...
行业资讯
边缘计算平台
在边缘计算领域,星环科技研发了边缘计算平台Sophon。Sophon是解决多模态数据集成和治理过程中的边缘化、智能化的云端-边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云-边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。Sophon在智能制造、智能安防、智能工地、智能交通、智能城市、智能校园、智能加油站等城市治理、设备可预测性维护等云边一体场景有着广泛的应用。当前边缘计算作为产业数字化转型核心技术已形成共识,我国也高度重视边缘计算的发展,积极推进边缘计算在工业互联网等多个领域的技术、标准与产业发展。星...
行业资讯
数字政府建设
近日,领先的IT市场研究和咨询公司IDC发布2022年数字政府百强榜,梳理出数字政府领域领先的技术供应商,评估了技术提供商的市场能力及市场份额。星环科技作为企业级大数据基础软件开发商,成功入选IDC数字政府百强榜“大数据及数据治理”模块。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。在政府领域,星环科技通过智慧政务数字底座为政府数字化转型建设提供计算、存储、算法等基础能力支撑,归集业务数据,优化业务流程,治理出有价值的数据资源,进行专题分析沉淀数据资产,服务部门之间数据共享与业务协同,服务领导决策与政策制定,服务公众、企业便捷办事。公司产品已被多个部委或省市机关部门使用,助力构建数字化政府,提升治理效率。比如星环科技基于数据云平台TDC为建设上海市数据资源平台提供了底层支撑,将70多个委办局以及16个区县业务库的结构化和非结构化数据进行归集,构建三级数据共享交换体系,保障数据安全,支撑“一网通办”等数据服务能力。此外,根据不...
图数据库是一种用于处理图形数据的特殊类型的数据库。它们旨在存储和管理关系和连接,具有比其他类型的数据库更强大的能力。目前国内有众多优秀图数据库产品,星环科技图数据库产品StellarDB其中之一。TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。TranswarpStellarDB优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的...