大模型管理平台哪个好用
星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。
大模型管理平台哪个好用 更多内容

行业资讯
大模型管理平台
大模型管理平台是一种用于管理大规模机器学习模型全生命周期的工具和系统,涵盖模型的训练、存储、部署、监控、评估、优化以及安全管理等各个环节,旨在帮助企业和研究机构更高效地开发、管理和应用大模型,充分发挥大模型的价值,提升业务效率和创新能力。大模型管理平台核心功能模型训练管理:协助数据准备与预处理工作,如清洗、标注和划分数据等;支持配置训练参数,如学习率、批次大小等,并监控训练过程中的指标,以便及时。安全与权限管理:通过设置用户权限,限制不同用户对模型的访问、修改和部署权限,对模型数据加密处理,防止数据泄露和恶意攻击,保障模型资产安全。大模型管理平台应用领域医疗保健:用于医学影像分析、疾病诊断预测的效率和质量。大模型管理平台发展趋势智能化管理:平台更加智能化,能自动分析模型训练和运行数据,提供智能优化建议,如自动调整训练参数、根据应用场景选择最佳模型版本部署。融合多种技术:与边缘计算、区块链等技术融合。在边缘计算方面,更好地管理部署在边缘设备上的模型,实现低延迟、高实时性应用;区块链技术可增强模型管理的安全性和数据可信度。云原生支持:更紧密地与云原生技术结合,提供更好的云服务集成,如自动弹性伸缩、资源优化配置等功能,助企业更高效地利用云计算资源管理和运行大模型。

行业资讯
大模型开发管理平台
解锁大模型开发管理平台:AI时代的“魔法工坊”大模型开发管理平台介绍概念:大模型开发管理平台是一种集成化的工具系统,旨在辅助开发者高效地进行大模型的开发、训练、优化、部署以及后续的管理维护工作。它整合了算力资源、数据管理、模型训练框架、评估工具等一系列要素,为大模型从构思到实际应用提供全流程支持。功能特点多样化模型支持:集成业界主流开源大模型,开发者无需从头构建模型,可选择合适的预训练模型进行用于大语言模型的提示词;支持检索增强生成,智能体开发等,助力构建更智能的大模型应用。模型运维管理:对大模型进行全生命周期管理,包括模型版本控制、性能监测、故障诊断与修复等,确保模型在生产环境中的稳定运行和持续优化。优势降低技术门槛:即使是缺乏深厚机器学习专业知识的人员,也能借助平台低代码甚至无代码的操作,参与到大模型开发应用中,加速企业数字化转型和创新。提升开发效率:一站式的工具和功能,减少了在不同工具和平台间切换的时间,自动化的流程和丰富的模板,进一步缩短开发周期。保障模型质量:完善的模型评估和优化机制,以及对算力资源的合理调配,有助于训练出高性能、高稳定性的大模型。应用场景智能客服:利用大

行业资讯
国内好用的大数据平台
国内好用的大数据平台大数据平台概述在当今信息爆炸的时代,大数据已成为推动社会进步和商业发展的重要力量。国内大数据平台经过多年发展,已经形成了较为完善的生态系统,能够满足不同规模企业和机构的数据处理数据分析与机器学习组件,为用户提供从基础统计分析到复杂预测模型的全套工具。技术特点分析国内主流大数据平台在技术上有几个显著特点。多数平台采用开源技术为核心,如生态系统组件,在此基础上进行了深度优化和本土化欺诈和信用评分。政府部门使用大数据平台进行城市管理、舆情监测和公共服务优化。制造业企业则应用平台实现供应链优化、设备预测性维护和质量控制。不同行业的应用场景对平台功能提出了差异化需求,促使平台提供商需求。这些平台通常具备数据采集、存储、处理、分析和可视化等全流程功能,为用户提供一站式的大数据解决方案。平台核心功能优秀的大数据平台通常具备几个关键功能模块。首先是分布式存储系统,能够处理海量结构化与非中文文本处理的支持,在自然语言处理方面具有本土优势。应用场景举例大数据平台在各行各业都有广泛应用。在互联网行业,平台被用于用户行为分析、个性化推荐和广告精准投放。金融领域则利用这些平台进行风险控制、反

行业资讯
好用的大数据平台有哪些?
好用的大数据平台有哪些?在当今数据驱动的时代,大数据平台已成为企业数字化转型的核心基础设施。面对海量数据的存储、处理和分析需求,各类大数据平台应运而生,为不同规模、不同行业的企业提供了多样化的分布式,支持从云端到边缘设备的全栈数据处理。无论技术如何变化,好用的大数据平台始终是那些能够帮助企业从数据中提取价值,同时保持灵活性以适应未来挑战的解决方案。解决方案。本文将介绍几种常见且实用的大数据平台类型及其特点,帮助读者了解如何选择适合自身需求的平台。首先,开源大数据平台因其灵活性和成本优势受到广泛欢迎。这类平台通常由社区驱动发展,源代码公开可自由修改、用于机器学习的库等,共同构成了一个完整的大数据生态系统。这类平台虽然学习曲线较陡峭,但灵活度高,能够满足各种定制化需求。其次,云端大数据服务平台近年来发展迅速,成为许多企业的首选。这类平台由各大云服务商提供,将复杂的大数据技术封装成简单易用的服务,用户无需关心底层基础设施的维护。云端平台通常提供从数据采集、存储、处理到分析的全套工具链,并且能够根据工作负载自动扩展资源,按实际使用量计费,大大减少

行业资讯
大模型平台
大模型平台是一种为开发、训练、优化和应用大规模人工智能模型而设计的综合性平台,以下是具体介绍:功能特性模型训练与优化:提供强大的计算资源和高效的训练算法,支持对大规模深度学习模型进行训练,可对模型的监控和评估,及时发现问题并进行调整和优化,还可以对模型的预测结果进行分析和解释。主要类型通用大模型平台:具有广泛的知识和强大的语言处理能力,可应用于多种自然语言处理任务和领域,为用户提供通用的智能服务和解决方案。行业大模型平台:针对特定行业的需求和特点进行定制化开发和优化,如金融领域的大模型平台、医疗领域的大模型平台等,能够更好地满足行业内的专业需求,提供更精准和有效的智能应用。开源大模型平台超参数进行自动调整和优化,以提高模型的性能和准确性。数据管理:具备数据收集、清洗、标注、存储和管理等功能,能够处理海量的文本、图像、语音等多模态数据,为模型训练提供高质量的数据支持。模型部署与应用:将训练好的模型方便地部署到生产环境中,提供多种接口和工具,使开发者能够将大模型集成到各种应用程序中,如智能客服、内容生成、智能推荐等。监控与评估:在模型训练和应用过程中,对模型的性能、运行状态等进行实时

5月26日向星力•未来数据技术峰会上,星环科技数据安全管理平台Defensor发布4.0版本,新版本引入大模型,可实现智能化自动化分类分级,帮助企业盘点敏感资产。同时,Defensor联合星环科技数据API安全网关Midgard、数据库监测与审计软件Audit等数据安全产品可帮助企业构建事前可知可防、事中可控、事后可查的全链路数据安全防护体系。事前可知,基于大模型的智能化分类分级事前阶段行业的分类分级大模型,可以做到开箱即用,自动化、智能化地帮助企业做分类分级。引入大模型后,分类分级的准确率有较大的提升。图中展示了大模型分类分级的流程,首先对元数据字典做预处理,进行语义的加工、中文的扩写以及短语的规范化。在此基础上,引入基于金融行业预训练的微调大语言模型,对他的背景进行预测,再对四级子类做精准预测,确保某一个字段能归到对应的、正确的二级大类下的四级子类。后,对于异常的、错误的知识点,Defensor也引入了增强效果反馈系统,通过少量人工补录的流程,可以形成一个模型的迭代,再做一次预训练,同时慢慢形成高质量、高可用、准确率高的金融行业分类分级大模型。下图是引入大模型之后分类分级的

行业资讯
大语言模型运营平台
星环大语言模型运营平台-SophonLLMOpsSophonLLMOps作为一个全面的大模型统一运营管理平台,旨在为用户打通从数据接入和开发、提示工程、大模型微调、大模型上架部署到大模型应用编排和开发、推理数据开发、数据维护等工作,对大语言模型涉及的原始数据、样本数据、提示词数据做清洗、探索、增强、评估和管理等。第二,SophonLLMOps具有模型运维管理能力。除了传统MLOps的六大业务效果对齐的全链路流程,从而实现针对大模型的“数据和分析的持续提升”。星环科技SophonLLMOps的工具链优势体现在以下几个方面:首先,SophonLLMOps拥有自己的样本仓库能力,覆盖训练数据统一——统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释外,针对大语言模型的微调、持续提升、评估、对齐等提供从计算框架、工具到计算、存储、通信的调度和优化支持。第三,SophonLLMOps具有大语言模型和其他任务的编排、调度和上线能力。SophonLLMOps提供Agent、Ops、DAG,结合星环科技的多款大数据、数据库产品,如向量库Hippo和分布式图数据库StellarDB等,将不同大

行业资讯
大模型运营平台
星环大模型运营平台TranswarpLLMOps是面向企业级用户的大模型全生命周期运营管理平台,旨在帮助企业快速、高效、闭环地将大模型落地至业务场景中。平台覆盖语料、模型、应用三大核心要素,打通了从提示词工程、检索增强、智能体构建、模型推理优化、模型安全和持续提升等大模型开发落地的全流程,同时兼容传统机器学习和深度学习模型,一站式满足企业全A1场景需求。此外,平台支持GPU/NPU异构算力(ARM/x86)混合部署、资源精细化切分和调度、海量多源模型统管、全局状态监控及预警等企业级功能。SophonLLMOps提供语料知识沉淀、高质量资产共享、灵活应用开发、可持续服务运营等能力,有助于降低企业使用门槛,并支持多种开发方式,具备企业级功能和安全防护,保障数据安全和合规性。

行业资讯
大模型管理
推荐等。制造业:应用于产品质量检测、故障预测、生产过程优化等。政府与公共服务:在政务服务、城市管理、公共政策制定等方面发挥作用。大模型管理的发展趋势智能化管理:平台更加智能化,能自动分析模型训练和运行大模型管理的定义大模型管理是指对大规模机器学习模型全生命周期的管理,涵盖模型的训练、存储、部署、监控、评估、优化以及安全管理等各个环节。其目的是帮助企业或研究机构更高效地开发、管理和应用大模型,充分发挥大模型的价值,提升业务效率和创新能力。大模型管理的核心功能模型训练管理:协助数据准备与预处理工作,支持配置训练参数,并监控训练过程中的指标。模型存储与版本控制:安全存储模型,记录不同版本及其变更操作权限,对模型数据进行加密处理。大模型管理的应用场景医疗保健:用于医学影像分析、疾病诊断预测、药物研发等。金融领域:进行风险评估、投资决策、客户服务等。教育行业:实现个性化学习、智能辅导、教育资源历史,便于回溯和对比。模型部署与集成:将模型部署到不同环境,并与各类应用系统集成。模型监控与评估:实时监控模型性能指标,定期用新数据进行评估,及时发现并解决问题。安全与权限管理:设置用户权限,限制访问和
猜你喜欢

星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...

行业资讯
金融、医疗知识图谱平台
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...

行业资讯
基于数据安全网关的跨境安全流通方案
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...

行业资讯
常见的图数据库应用场景有哪些?
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...

行业资讯
分布式隐私计算平台
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...

行业资讯
图数据库有哪些特点?
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...

行业资讯
什么是时空数据库?
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
数据要素安全流通服务
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...

行业资讯
银行图数据库应用场景有哪些?
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...

行业资讯
国产化替代升级实践
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...