隐私计算平台选型
Sophon P²C是一款分布式隐私计算平台,集隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的解决方案。以隐私保护为前提,Sophon P²C解决了跨组织协作时无法安全利用各方数据的困境。平台提供多种开箱即用的工具,方便用户在联邦框架下进行数据处理、分析、特征工程等工作,并快速建立机器学习和深度学习模型。加密网络通信模块负责节点间大量多批次加密信息的传输,多种加密安全手段和优异的通信架构,确保平台在大数据量下也能获得卓越的性能。Sophon P²C的多种联邦学习算法适用于各类垂直业务场景,为跨企业AI协作提供安全可靠的平台支持。
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整的解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据的困境。
隐私计算平台选型 更多内容

行业资讯
隐私计算建设方案
、技术选型等。平台搭建与部署:根据技术选型和架构设计,搭建隐私计算平台,包括硬件设备的采购与安装、软件系统的部署与配置等。在搭建过程中,需确保平台的性能、安全性和稳定性满足要求。数据接入与预处理:将各数据隐私的前提下,实现跨机构、跨部门的数据融合分析与应用,充分释放数据价值,为业务创新、决策支持等提供有力支撑。二、技术选型多方安全计算:适用于需要在多个参与方之间进行联合计算,且不暴露原始数据的场景。应用层通过与隐私计算层交互,获取计算结果,并以直观的方式呈现给用户。管理层:负责对整个隐私计算平台进行管理和监控,包括用户管理、权限管理、任务管理、安全管理、审计管理等。管理层需确保平台的正常运行、数据参与方的数据接入隐私计算平台,并进行数据清洗、转换、标注等预处理工作,确保数据的质量和可用性。在数据接入过程中,需严格遵守数据安全和隐私保护的相关规定,确保数据的合法合规使用。模型训练与应用开发:基于隐私计算平台,进行联合模型的训练和应用开发。在模型训练过程中,需充分利用隐私计算技术,确保数据的隐私安全。同时,根据业务需求,开发各种基于隐私计算的应用服务,如数据分析报表、预测模型、决策支持系统等

行业资讯
隐私计算建设方案
、技术选型等。平台搭建与部署:根据技术选型和架构设计,搭建隐私计算平台,包括硬件设备的采购与安装、软件系统的部署与配置等。在搭建过程中,需确保平台的性能、安全性和稳定性满足要求。数据接入与预处理:将各数据隐私的前提下,实现跨机构、跨部门的数据融合分析与应用,充分释放数据价值,为业务创新、决策支持等提供有力支撑。二、技术选型多方安全计算:适用于需要在多个参与方之间进行联合计算,且不暴露原始数据的场景。应用层通过与隐私计算层交互,获取计算结果,并以直观的方式呈现给用户。管理层:负责对整个隐私计算平台进行管理和监控,包括用户管理、权限管理、任务管理、安全管理、审计管理等。管理层需确保平台的正常运行、数据参与方的数据接入隐私计算平台,并进行数据清洗、转换、标注等预处理工作,确保数据的质量和可用性。在数据接入过程中,需严格遵守数据安全和隐私保护的相关规定,确保数据的合法合规使用。模型训练与应用开发:基于隐私计算平台,进行联合模型的训练和应用开发。在模型训练过程中,需充分利用隐私计算技术,确保数据的隐私安全。同时,根据业务需求,开发各种基于隐私计算的应用服务,如数据分析报表、预测模型、决策支持系统等

行业资讯
隐私计算建设方案
、技术选型等。平台搭建与部署:根据技术选型和架构设计,搭建隐私计算平台,包括硬件设备的采购与安装、软件系统的部署与配置等。在搭建过程中,需确保平台的性能、安全性和稳定性满足要求。数据接入与预处理:将各数据隐私的前提下,实现跨机构、跨部门的数据融合分析与应用,充分释放数据价值,为业务创新、决策支持等提供有力支撑。二、技术选型多方安全计算:适用于需要在多个参与方之间进行联合计算,且不暴露原始数据的场景。应用层通过与隐私计算层交互,获取计算结果,并以直观的方式呈现给用户。管理层:负责对整个隐私计算平台进行管理和监控,包括用户管理、权限管理、任务管理、安全管理、审计管理等。管理层需确保平台的正常运行、数据参与方的数据接入隐私计算平台,并进行数据清洗、转换、标注等预处理工作,确保数据的质量和可用性。在数据接入过程中,需严格遵守数据安全和隐私保护的相关规定,确保数据的合法合规使用。模型训练与应用开发:基于隐私计算平台,进行联合模型的训练和应用开发。在模型训练过程中,需充分利用隐私计算技术,确保数据的隐私安全。同时,根据业务需求,开发各种基于隐私计算的应用服务,如数据分析报表、预测模型、决策支持系统等

行业资讯
隐私计算建设方案
、技术选型等。平台搭建与部署:根据技术选型和架构设计,搭建隐私计算平台,包括硬件设备的采购与安装、软件系统的部署与配置等。在搭建过程中,需确保平台的性能、安全性和稳定性满足要求。数据接入与预处理:将各数据隐私的前提下,实现跨机构、跨部门的数据融合分析与应用,充分释放数据价值,为业务创新、决策支持等提供有力支撑。二、技术选型多方安全计算:适用于需要在多个参与方之间进行联合计算,且不暴露原始数据的场景。应用层通过与隐私计算层交互,获取计算结果,并以直观的方式呈现给用户。管理层:负责对整个隐私计算平台进行管理和监控,包括用户管理、权限管理、任务管理、安全管理、审计管理等。管理层需确保平台的正常运行、数据参与方的数据接入隐私计算平台,并进行数据清洗、转换、标注等预处理工作,确保数据的质量和可用性。在数据接入过程中,需严格遵守数据安全和隐私保护的相关规定,确保数据的合法合规使用。模型训练与应用开发:基于隐私计算平台,进行联合模型的训练和应用开发。在模型训练过程中,需充分利用隐私计算技术,确保数据的隐私安全。同时,根据业务需求,开发各种基于隐私计算的应用服务,如数据分析报表、预测模型、决策支持系统等

行业资讯
隐私计算建设方案
、技术选型等。平台搭建与部署:根据技术选型和架构设计,搭建隐私计算平台,包括硬件设备的采购与安装、软件系统的部署与配置等。在搭建过程中,需确保平台的性能、安全性和稳定性满足要求。数据接入与预处理:将各数据隐私的前提下,实现跨机构、跨部门的数据融合分析与应用,充分释放数据价值,为业务创新、决策支持等提供有力支撑。二、技术选型多方安全计算:适用于需要在多个参与方之间进行联合计算,且不暴露原始数据的场景。应用层通过与隐私计算层交互,获取计算结果,并以直观的方式呈现给用户。管理层:负责对整个隐私计算平台进行管理和监控,包括用户管理、权限管理、任务管理、安全管理、审计管理等。管理层需确保平台的正常运行、数据参与方的数据接入隐私计算平台,并进行数据清洗、转换、标注等预处理工作,确保数据的质量和可用性。在数据接入过程中,需严格遵守数据安全和隐私保护的相关规定,确保数据的合法合规使用。模型训练与应用开发:基于隐私计算平台,进行联合模型的训练和应用开发。在模型训练过程中,需充分利用隐私计算技术,确保数据的隐私安全。同时,根据业务需求,开发各种基于隐私计算的应用服务,如数据分析报表、预测模型、决策支持系统等

行业资讯
隐私计算建设方案
、技术选型等。平台搭建与部署:根据技术选型和架构设计,搭建隐私计算平台,包括硬件设备的采购与安装、软件系统的部署与配置等。在搭建过程中,需确保平台的性能、安全性和稳定性满足要求。数据接入与预处理:将各数据隐私的前提下,实现跨机构、跨部门的数据融合分析与应用,充分释放数据价值,为业务创新、决策支持等提供有力支撑。二、技术选型多方安全计算:适用于需要在多个参与方之间进行联合计算,且不暴露原始数据的场景。应用层通过与隐私计算层交互,获取计算结果,并以直观的方式呈现给用户。管理层:负责对整个隐私计算平台进行管理和监控,包括用户管理、权限管理、任务管理、安全管理、审计管理等。管理层需确保平台的正常运行、数据参与方的数据接入隐私计算平台,并进行数据清洗、转换、标注等预处理工作,确保数据的质量和可用性。在数据接入过程中,需严格遵守数据安全和隐私保护的相关规定,确保数据的合法合规使用。模型训练与应用开发:基于隐私计算平台,进行联合模型的训练和应用开发。在模型训练过程中,需充分利用隐私计算技术,确保数据的隐私安全。同时,根据业务需求,开发各种基于隐私计算的应用服务,如数据分析报表、预测模型、决策支持系统等

行业资讯
可信隐私计算评测
选型的风向标。星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台提供多种答疑、集中评议,共计35家企业的产品通过了本批评测。星环科技隐私计算平台SophonP²C通过了多方安全计算性能专项评测,也是唯一一家通过第七批“可信隐私计算评测”该类别评测的厂商。中国信通院“可信隐私获得卓越的性能。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。中国信通院第七批“可信隐私计算评测”评审会。评审会专家由来自中国科学院、中央财经大学、北京航空航天大学、中国科学院大学、北京交通大学等单位的专家组成。评审环节包括产品资料审核、测试报告审核、质询与计算评测”体系自2018年起逐步构建,是目前国内隐私计算领域早、全、广受行业认可的评测体系。经过4年的发展,“可信隐私计算评测”已成为隐私计算领域权威的第三方评测品牌,成为供给侧产品研发和需求侧采购

行业资讯
可信隐私计算评测
选型的风向标。星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台提供多种答疑、集中评议,共计35家企业的产品通过了本批评测。星环科技隐私计算平台SophonP²C通过了多方安全计算性能专项评测,也是唯一一家通过第七批“可信隐私计算评测”该类别评测的厂商。中国信通院“可信隐私获得卓越的性能。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。中国信通院第七批“可信隐私计算评测”评审会。评审会专家由来自中国科学院、中央财经大学、北京航空航天大学、中国科学院大学、北京交通大学等单位的专家组成。评审环节包括产品资料审核、测试报告审核、质询与计算评测”体系自2018年起逐步构建,是目前国内隐私计算领域早、全、广受行业认可的评测体系。经过4年的发展,“可信隐私计算评测”已成为隐私计算领域权威的第三方评测品牌,成为供给侧产品研发和需求侧采购
猜你喜欢
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...