LLM什么语言写的

星环无涯·问知
星环科技无涯·问知Infinity Intelligence,是一款基于星环大模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源企业级垂直领域问答产品。

LLM什么语言写的 更多内容

大型语言模型(LLM)是指采用深度学习算法训练巨型自然语言处理模型。LLM特点是能够处理大量文本数据,从而具有很强自然语言理解生成能力。LLM可以通过学习大规模语料库中统计规律和模式,从而实现对自然语言理解和生成。与传统基于规则自然语言处理技术相比,LLM能够更好地应对自然语言多变性和复杂性,因为它不需要事先编写冗长规则集来处理语言各种变体和结构。相反,LLM通过学习大量语料库,自主地学习自然语言各种规律和模式,从而能够更准确地理解和生成自然语言。目前,LLM已经成为自然语言处理领域关键技术,被广泛应用于机器翻译、本摘要、对话系统、语音识别等领域,不仅能够提高自然语言处理效率和准确率,还能够为人工智能领域发展提供强有力支持。为帮助企业构建自己大模型,星环科技推出了机器学习模型全生命周期管理工具平台SophonLLMOps,支持从数据接入开发、提示工程环科技将自主研发领先创新技术赋能各行各业,与生态伙伴共同打造国产化大数据技术生态,推动数字经济可持续发展。无涯是一款面向金融量化领域、超大规模参数量生成式大语言模型,融合了舆情、资金、人物、空间
什么是大型语言模型(LLM)?大型语言模型(LLM)是一种人工智能(AI)算法,它使用深度学习技术和海量数据集来理解、总结、生成和预测新内容。生成式人工智能一词也与LLM密切相关,事实上,LLM是用于自然语言处理(NLP)应用中,即用户输入自然语言查询以生成结果。LLM是人工智能中语言模型概念演变,它极大地扩展了用于训练和推理数据。反过来,它也大大提高了人工智能模型能力。虽然对于训练数据集需要多大并没有一个公认数字,但一个LLM通常至少有10亿个或更多参数。为什么LLM对企业越来越重要?随着人工智能不断发展,它在商业环境中地位越来越重要。这体现在对LLM和机器学习工具使用。通过提示询问LLM,人工智能推理模型就能生成响应,响应可以是对问题回答、新生成文本、摘要文本或情感分析报告。大型语言模型有哪些用途?大型语言模型越来越受欢迎,因为它们在一系列NLP任务中具有广泛适用性,包括以下:文本生成:LLM一个主要用途是能够生成经过训练任何主题文本。翻译:对于经过多语言训练LLM而言,将一种语言翻译成另一种语言能力是其常见功能。内容摘要:总结文本块或多页内容是
行业资讯
LLM语言模型
LLM,全称LargeLanguageModel,是一种大型语言模型,旨在理解和生成自然语言文本,并尝试回答各种自然语言问题、提供有关信息和建议。LLM通过对大量文本数据进行训练,学习了如何理解和生成文本,从而为用户提供准确、高效、有用服务。LLM核心是一个深度学习模型,通常采用神经网络架构。这些模型具有强大学习和预测能力,可以处理各种自然语言任务,如文本分类、翻译、问答、文本生成等。LLM应用非常广泛,它可以用于各种自然语言处理领域,如智能客服、智能助手、机器翻译、自然语言理解、文本生成等。LLM还可以用于各种领域数据分析和挖掘,如金融、医疗、法律、科技等。此外,LLM还可以用于各种自然语言处理系统开发和优化,如语音识别、自然语言理解和生成等。虽然LLM具有很多优点和应用,但也存在一些问题和挑战。首先,LLM需要大量计算资源和数据来进行训练和优化,这使得其开发和维护成本很高。其次,LLM可能存在一些偏见和错误,这可能源于训练数据选择和模型架构。此外,LLM理解和生成能力还需要进一步提高,以便更好地应对各种自然语言任务。LLM是一种非常有前途和潜力技术,它可
大型语言模型(LargeLanguageModel,LLM)是一种通过机器学习技术基于大规模语言文本数据训练而来模型,大型语言模型LLM可以对自然语言进行处理和生成,如文本自然语言生成、文本自然语言理解和翻译等。通常情况下,大型语言模型LLM需要使用大规模文本数据进行预训练,以提高模型性能。在预训练完成后,LLM模型可以继续进行微调,以适应特定任务场景或应用场景。这种预训练和微调方式使得LLM模型能够在不同领和任务中具备相对较好适应性和泛化能力。LLM研究和用领域非常广泛,其中包括情感分析、机器翻译、智能问答、阅读理解和信息检索等。以语言理解为例,LLM模型可以对自然语言进行深入理解和分析,包括词汇、句法和语义等方面。与传统自然语言处理方法相比,LLM模型可以自主地从海量文本数据中学习和提取语言特征,避免了传统方法中需要人工定义特征缺陷,也提高了处理效率和准确率。星环大型语言模型LLM相关产品为帮助企业构建自己大模型,星环科技推出了机器学习模型全生命周期管理工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和
行业资讯
LLM语言模型
语言模型(LLM)是指使用大量文本数据训练深度学习模型,可以生成自然语言文本或理解语言文本含义。大语言模型可以处理多种自然语言任务,如文本分类、问答、对话等。大语言模型通常使用大规模语料库自然语言任务,并且生成文本质量较高。此外,由于大语言模型经过了大量文本数据训练,因此其具有很好泛化性能,可以适应多种场景和应用。LLM语言模型应用场景主要集中在自然语言处理、机器翻译、智能写作、智能客服、智能语音助手、自然语言推理等领域。自然语言处理:LLM可以用于文本生成、情感分析、语言翻译等领域,帮助人们快速生成高质量文章、简历、报告等。机器翻译:特别是在处理长文本和专业术语时效果更为进行训练,这些语料库包含了大量文本数据,涵盖了各种领域和语言风格。通过训练,大语言模型可以学习到文本数据内在特征和规律,从而在各种自然语言处理任务中表现出色。大语言模型优势在于其能够处理复杂显著。智能写作助手:可以利用LLM文本生成能力,帮助人们快速生成高质量文章、简历、报告等。智能客服机器人:能够帮助用户解决问题和提供相关服务。这类应用可以在电子商务、在线教育、医疗健康等领域得到
大型语言模型(LLM)是一种基于深度学习技术语言处理模型,其目的是理解和生成自然语言文本。LLM主要应用于自然语言处理、语音识别、机器翻译等领域。大型语言模型LLM核心是神经网络,其基本结构是。大型语言模型LLM训练需要大量文本数据。通过对大量文本数据进行预处理,将其转化为模型可以处理格式。然后,使用反向传播算法和梯度下降等优化方法对模型进行训练,使其能够根据输入文本生成合理输出。在训练过程中,需要不断地调整模型参数,以提高其性能。大型语言模型LLM应用非常广泛,例如在自然语言处理领域中,LLM可以用于文本分类、情感分析、命名实体识别等任务。在机器翻译领域中,LLM可以用层次化神经网络,包括输入层、隐藏层和输出层。其中,隐藏层是神经网络核心部分,用于从输入数据中学习特征表示。在LLM中,隐藏层数量和每层神经元数量是非常重要参数,直接影响模型性能和表达能力于翻译短文本或生成翻译建议。此外,LLM还可以用于智能客服、智能推荐、语音识别等领域。星环科技大模型训练工具,帮助企业打造自己专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应工具
LLM模型是一个通过大量文本数据训练深度学习模型。LLM模型可以生成自然语言文本,也能够理解语言文本含义。具体来说,LLM模型可以用于处理多种自然语言任务,例如文本分类、问答以及对话等。由于其能力在自然语言处理领域广泛应用,LLM模型被视为进一步发展人工智能重要途径之一。LLM模型训练过程通常使用大量文本数据,例如互联网上文章、新闻、社交体数据等。通过这些数据训练,模型可以从中学习到语言结构、语法规则、上下文信息等。这样学习使得模型能够生成符合自然语言规则文本,并能够理解人类语言含义。在文本生成方面,LLM可以生成各种类型文本,如文章、评论、故事等。更进一步,LLM可以根据给定前提或问题来生成响应,从而备对话能力。这种生成式模型应用非常广泛,例如智能助手、自动回复系统等。除了文本生成,LLM模型还可以用于语言理解任务。通过输入一段自然语言文本,模型可以理解文本表示。这使得LLM模型能够在处理自然语言任务方面取得很好性能。尽管LLM模型具备强大能力,但也面临一些挑战。文本复杂性、歧义性和上下文依赖性使得自然语言处理任务仍然具有一定难度。此外,模型训练
大型语言模型(LargeLanguageModel,LLM)是一种基于深度学习技术强大自然语言处理工具。是一种模仿人类言能力人工智能系统,可以根据输入上下文生成连贯、语义合理文本。大型语言模型(LLM)可以用于各种自然语言处理任务,如文本生成、文本摘要、语言翻译。大型语言模型(LLM)核心是深度学习技术,特别是自然语言处理领域神经网络模型。通过大规模训练,LLM可以学习到丰富语言知识和语言规律,并且可以灵活地运用这些知识和规律进行文本生成。与传统语言模型相比,LLM具有以下优势:LLM训练数据非常丰富:它可以在互联网上爬取大量文本数据,并利用这些数据进行训练。这样统计规律推断能力使得LLM可以在生成文本过程中更好地控制语气、风格等。大型语言模型(LLM)是一种强大自然语言处理工具,具有广泛应用前景。星环科技大模型训练工具,帮助企业打造自己专属大模型星就可以获取包括各种专业领域和各种语种文本数据,使得LLM在不同领域和语种文本生成任务上都具有更好表现。LLM利用了深度神经网络强大表达能力:深度神经网络可以从输入上下文中提取丰富义信息,包括
大型语言模型(LargeLanguageModel,简称LLM)是一种基于深度学习自然语言处理(NLP)技术,LLM大模型通常基于神经网络模型,特别适合处理大规模文本数据,可以发现语言文字中规律,并根据提示自动生成符合这些规律内容。LLM模型通常拥有数十亿到数万亿个参数,能够处理各种自然语言处理任务,如自然语言生成、文本分类、文本摘要、机器翻译、语音识别等。LLM大模型应用非常泛,通过预训练和微调方式,可以用于生成文本,有很强语言表达能力,能够生成流畅、连贯句子,并且在许多自然语言处理任务中取得了很好效果。LLM大模型还被广泛应用于机器翻译任务。通过使用大规模双语对齐数据进行预训练,LLM大模型可以在源语言和目标语言之间建立起一个中间表示空间,从而实现高质量翻译。相比传统基于统计机器翻译模型,LLM大模型能够更好地处理长句子、复杂语法结构和上下文信息,从而可以应用于各种领域,包括医疗、法律、金融等,帮助用户快速获取所需信息。LLM大模型在自然语言处理领域具有巨大潜力和应用前景。通过深度学习技术发展,LLM大模型已经取得了很多突破,并且在多个任务中
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...