支持万亿参数大模型训练
并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通
支持万亿参数大模型训练 更多内容

行业资讯
大模型简介
大模型通常是指具有海量参数的深度学习模型。这些参数数量可达数十亿甚至数万亿,通过大规模的数据训练得到,能够学习到丰富的知识和复杂的模式。训练方式无监督预训练:这是大模型训练的关键步骤。在这个阶段通用性。例如,一个经过良好训练的语言大模型可以处理多种语言相关的任务,而不需要为每个任务重新构建模型。自动特征提取:能够自动从数据中提取特征,减少了人工特征工程的工作量。例如,在图像识别中,模型可以自己学习到图像中物体的形状、颜色等特征。,模型使用大量的无监督数据进行学习。例如,在语言模型中,通过预测句子中的下一个单词或掩盖单词的恢复来学习语言的模式。这种方式使得模型能够学习到数据的通用特征和规律。监督微调:在无监督预训练之后,会根据具体。计算机视觉:用于图像分类、目标检测、图像生成等任务。例如,一些大模型可以根据用户的描述生成相应的图像。语音识别和合成:能够将语音信号转换为文字,或者将文字合成为语音。在智能语音助手等应用中发挥重要作用。多领域融合:还可以应用于跨领域的任务,如结合文本和图像进行跨模态检索,或者结合语音和自然语言处理进行智能客服等。优势泛化能力强:由于学习了大量的数据,大模型能够在不同的场景和任务中表现出较好的

行业资讯
大模型训练
大模型训练是指在大规模数据集上利用高性能计算资源,对拥有大量参数的深度学习模型进行训练的过程。大模型通常指的是拥有数百万到数十亿参数的深度学习模型。这些模型通过处理大量数据,能够学习到复杂的模式和:重复前向传播和反向传播过程,直到达到预定的迭代次数或满足停止条件。计算资源需求高:大模型训练需要大量的GPU资源和存储空间。数据质量和偏见问题:低质量的数据或存在偏见的数据会影响模型性能和公平性。模型泛化能力:如何确保在未见过的数据上表现良好是一个持续的研究课题。大模型训练是现代AI研究的核心组成部分,它不仅推动了技术的进步,也带来了新的挑战。星环大语言模型运营平台-SophonLLMOps为了帮助企业用户基于大模型构建未来应用,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现领域大模型的训练、上架和迭代。SophonLLMOps服务于大模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。特征,从而在各种任务上表现出色,如自然语言处理、图像识别和语音识别等。数据准备:收集和预处理大量的训练数据是第一步。这包括清洗数据、标注数据以及将其转换为适合模型输入的形式。模型设计:根据任务需求选择

行业资讯
大模型是什么意思
大模型是什么意思?大模型(LargeLanguageModels)是指基于深度学习技,通过使用巨量的语言数据进行训练,构建出具有数十亿、甚至万亿级别参数的自然语言处理模型。这些模型可以用于自然语言理解、生成等多种任务,并在某些领域的任务上达到了与人类相当或甚至更好表现。近年来,随着计算资源、语言数据、深度学习算法的不断提升,大模型在自然语言处理领引起了广泛关注和研究。这些模型的训练和应用需要大量处理门槛,让更多的研究者和应用开发者可以快速进行实验和应用,推动了自然语言处理应用的快速发展。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二,帮助客户将原型的大语言的计算资源和算法优化,但它们为自然语言处理研究和应用带来了重的进展和变革。大模型的出现为自然语言处理领域带来了重大的变化。传统的自然语言处理任务通常采用各种基于规则或者统计模型的方法,但这些方法依赖于

行业资讯
ai大模型是什么?
AI大模型通常是指基于人工智能领域的深度学习技术,通过大规模的训练数据和计算资源,构建起具有数十亿、甚至万亿级别参数的深度学习模型。这些模型可以涉及多种AI领域,如自然语言处理、计算机视觉、语音识别等。AI大模型的核心优势在于拥有巨量的参数和数据,可以进行更复杂和精细的建模和预测,从而更好地解决现实世界的问题。目前,一些著名的AI大模型通过使用大量的数据集,并结合新的深度学习算法,可以在许多AI领域内实现前所未有的性能,推动了AI技术的快速发展,并带来了新的应用领域和商业机会。同时,AI大模型也需要巨大的计算资源和训练时间,这在一定程度上限制了它们的应用范围和发展速度。AI大模型不仅都得益于AI大模型所提供的极高的准确性和泛化能力。此外,AI大模型也面临着一些挑战和限制。例如,一些大模型存在模型泛化不足和计算资源消耗较大的问题;而且,大模型的训练需要大量异构计算资源,这对于中小企业和一些个人开发者而言是一大负担。因此,在未来的发展中,如何优化AI大模型训练算法、提高模型效率和可解释性、同时降低硬件成本和训练时间,将是AI大模型发展研究的重要方向。星环科技大模型训练工具,帮助

行业资讯
预训练大模型,预训练大模型是什么?
预训练大模型是指在大型数据集上进行训练的深度神经网络模型,其中包含大量的参数和层级。这些模型通常使用大量的计算资源和大数据集进行训练,可以提高其性能和泛化能力。预训练大模型可以通过预先在大数据集上进行训练,来提高模型在特定任务上的表现,并减少对于任务特征依赖。预训练大模型通常需要在海量的数据集上进行训练,以获得更好的性能。在训练预训练大模型时,通常会使用大量的计算资源和基础设施,例如GPU集群、超级计算机和云服务。与传统的机器学习方法相比,预训练大模型具有更高的学习能力和性能,因为它们可以自动地从海量数据中发现隐藏的模式和规律,并通过相应任务的调整,进行微调实现更好的表现。这种方法已经在许多领域中取得了显著的成效,例如计算机视觉、自然语言处理、语音识别等。预训练大模型是一种有效的机器学习技术,它在大型数据集上进行训练,可以提高模型的性、泛化和自适应能力,可以应用在多个领域,有关领域的应用提供更好的训练模型。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型

行业资讯
人工智能大模型
人工智能大模型是目前人工智能领域的一个重要研究领域。大模型是指由数百亿甚至数万亿个参数组成的神经网络模型,这些模型能够通过海量数据进行训练,从而拥有强大的数据处理能力和精确的预测能力。在许多领域,如自然语言处理、计算机视觉和自动驾驶等,大模型已经成为解决各种问题的“法宝”。人工智能大模型的研究与发展伴随着计算硬件的快速进步。在过去的几十年中,计算硬件的性能不断提高,从而为大模型的训练和应用提供了强大的支持。特别是在近年来,由于深度学习技术的不断发展和计算硬件的进一步升级,大模型的规模和性能有了进一步的提升。人工智能大模型是目前人工智能领域的一个重要研究方向,其已经在各个领域展现出强大的应用SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予大模型“长期记忆生成式大语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解和生成能力,支持股票、债券、基金、商品等市场事件的全面复盘、总结及演绎推理,以及政策研报的深度分析。将在金融投研、量化

行业资讯
大模型是如何训练的?
,用于衡量模型预测的单词分布与真实单词分布之间的差异。通过最小化目标函数,模型不断调整参数,以提高对数据的拟合能力。采用大规模计算资源:无监督预训练需要大量的计算资源来处理海量的数据和复杂的模型架构。例如,采用模型剪枝技术去除模型中不重要的连接或参数,使用量化技术将模型的参数表示为低精度的数据类型,或采用知识蒸馏方法将大模型的知识迁移到较小的模型中。部署与应用模型部署:将训练好的模型部署到实际的大模型的训练过程是一个复杂且计算密集型的任务,以下是一般的训练步骤:数据收集与预处理收集海量数据:从各种渠道收集大量的数据,如互联网上的文本、图像、音频等。这些数据应具有多样性和代表性,以涵盖不同的为训练集、验证集和测试集。训练集用于模型的训练,验证集用于在训练过程中评估模型的性能,调整超参数,防止过拟合,测试集则用于最终评估模型在未见过数据上的泛化能力。选择合适的模型架构无监督预训练使用大量无分析任务中,使用带有情感标签的文本数据对预训练模型进行微调,使模型能够更好地适应情感分析任务的特点和要求。调整模型参数:在微调过程中,只对模型的部分参数进行调整,通常是在预训练模型的基础上添加一些特定

行业资讯
人工智能大模型是什么
人工智能大模型通常指基于深度学习算的大规模神经网络模型,其通过使用大量的数据和计资源来进行训练,具有数十亿、甚至万亿级别的参数量。人工智能大模型旨在实现高精度的预测和推断,可以应用于多个领域,如参数和更深层的神经网络结构,得模型能够更好地理解和处理复杂的问题。使用大规模的数据进行训练,可以使这些大模型具备更强的泛化能力,并在各种任务中取得更准确的结果。人工能大模型在自然语言处理、计算机视觉任务,能够识别和生成更真实、细节丰富的图像。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二,帮助客户将原型的大语言模型应用,成功在实际生产中投入应用;第三,帮助客户自然语言处理、计算机视觉、语音信号处理等。与传统的人工智能模型相比,人工智能大模型的优势在于其更的精度、更强的泛化能力和更广泛的应用范围。人工智能大模型的发展对人工智能领域带来了巨大的影响。它们具有更高的

行业资讯
大模型推理训练
大模型推理训练在人工智能领域,大模型已经成为推动技术进步的重要力量。这些拥有数十亿甚至数千亿参数的神经网络模型,展现出惊人的语言理解、生成和推理能力。而"大模型推理训练"作为这一领域的核心技术之一,正在改变我们与机器交互的方式。什么是大模型推理训练大模型推理训练是指在大型预训练语言模型基础上,通过特定方法进一步提升其逻辑推理和问题解决能力的训练过程。与传统的监督学习不同,这种训练更加注重模型对自洽性训练,通过让模型生成多个可能答案,然后选择一致和合理的解决方案,减少模型输出中的矛盾和不合理结论。这种方法特别适合开放领域的复杂问题。应用场景经过良好推理训练的大模型,在多个领域展现出实用价值。在教育领域,它们能够逐步解答数学题,解释科学概念,甚至指出学生学习中的思维误区。在法律和医疗等专业领域,这类模型可以分析案例、提出诊断建议,并说明判断依据。在商业决策支持方面,具备推理能力的大模型能够分析复杂信息的理解和分析能力,而不仅仅是模式识别。这类训练通常分为两个阶段:首先是通过海量数据进行预训练,使模型掌握语言的基本规律和世界知识;然后通过专门的推理训练方法,如思维链提示、指令微调等,提高模型
猜你喜欢

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...