大模型训练费用怎么算
并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通
大模型训练费用怎么算 更多内容

行业资讯
大模型算力
大模型算力是指计算机系统执行大模型相关计算任务的能力。大模型的重要性训练效率:大模型通常具有庞大的参数规模和海量的训练数据,高效的算力能够显著加快模型训练速度,缩短研发周期。性能保障:在模型的推理、更前沿的技术和模型架构提供了可能,推动大模型技术不断进步与发展,进而拓展人工智能的应用边界和深度。主要算力来源硬件设备:CPU:中央处理器,擅长处理多线程并发任务,适用于逻辑控制密集型工作负载,但在处理大规模并行计算任务时效率相对较低,通常作为大模型训练和推理的辅助设备。GPU:图形处理器,拥有大量计算核心,特别适合进行大规模矩阵运算,在深度学习场景下表现出色,是目前大模型训练和推理的主流阶段,即根据输入生成输出的过程,强大的算力可以保证快速、准确地响应用户请求,提供流畅的用户体验,尤其是在处理复杂任务和大量并发请求时,如智能客服、语音助手等应用场景。创新能力:充足的算力储备为探索更复杂硬件加速设备。FPGA:现场可编程门阵列,可以通过重新配置实现不同的计算架构,灵活性较高,适用于一些对定制化计算有要求的场景,但开发难度相对较大。算力单位常用的算力单位有FLOPS

行业资讯
大模型和小模型
大模型通常指使用大规模数据和强大的计算能力训练出来的具有大量参数的模型,是“大数据+大算力+强算法”结合的产物,参数量可达数十亿甚至数千亿。小模型参数量相对较少的深度神经网络模型,计算需求低,体积小,训练和推理速度快。特点大模型:强大的性能和泛化能力:能够更精确地拟合复杂的数据分布,在自然语言处理、图像识别、语音识别等复杂任务上展现出更出色的性能和准确度,可适应一系列不同类型的任务。高预测能力以及专业人员的维护费用等。小模型:轻量化和高效性:参数量少,计算需求低,训练和推理速度快,可在资源有限的设备和环境中使用,如移动设备、嵌入式系统等,适合对实时性要求高的应用,能够快速响应。低成本:训练:能在大数据集上捕捉更多细节和模式,从而提供更准确的预测和决策支持。训练和推理成本高:由于参数量巨大,训练时间长,需要大量的时间和计算资源投入,对硬件要求高,部署和维护成本也较高,包括计算资源、存储空间

行业资讯
AI大模型怎么训练?
AI大模型训练是先收集和预处理数据,接着选择并搭建模型架构,然后进行无监督预训练,再通过有监督微调或指令微调让模型适应具体任务,过程中进行优化与调参,最后对模型评估与监控。以下是一般的训练步骤:数据、组织机构名标注等,用于监督学习。数据划分:将数据划分为训练集、验证集和测试集,训练集用于模型的训练,验证集用于调整模型的超参数和评估模型的性能,防止过拟合,测试集用于最终评估模型在未见过数据上的泛化能力。模型预训练无监督学习:使用大量的无监督数据进行预训练,让模型自动学习数据中的语言模式、语义关系和知识结构。常见的无监督学习任务包括语言建模、掩码语言建模、下一句预测等,通过预测文本中的下一个单词、填补掩码位置的单词或判断两句话的先后顺序等方式,让模型学习语言的语法和语义规则。强化学习:近端策略优化(PPO)是一种强化学习算法,可用于训练智能代理程序以执行任务和决策,通过与环境互动,收集观测值、采取的动作和获得的奖励,估计优势函数,并使用PPO的目标函数来更新策略,以增加优势函数,从而使模型学习到最优的行为策略.人类反馈强化学习(RLHF):将强化学习与人类反馈相结合,让人类训练师对模型的

行业资讯
大模型训练平台
场景:定义大模型训练平台是面向AI开发者的一站式大模型开发及服务运行平台,基于云管基座平台和算力平台,为用户提供从数据管理、模型训练、模型管理到模型服务的全流程开发支持。功能数据工程:提供数据导入、数据大模型训练平台是一个为开发者提供定制化大模型解决方案的平台,它汇集了行业内知名的大模型,通过轻量级的训练和丰富的训练方法,帮助开发者快速构建专属的大模型。以下是大模型训练平台的详细定义、功能和应用、模型调优、模型评测、模型量化编译等功能。平台提供丰富的预训练大模型,用户可在平台上采用不同的训练方式(预训练、监督微调SFT)进行模型训练,不断调优迭代模型效果,从而提升模型性能。服务部署:提供模型清洗、数据增强、数据管理等功能,并支持开源已处理的数据集。用户可以根据实际需求,依照平台数据格式要求上传数据信息或使用平台内的开源数据集,为后续训练、评估、编译等流程提供支撑。模型开发:提供模型训练完整Prompt。还支持对Prompt语料进行内容质量和结构上的优化,便于获得更符合期望的大模型推理结果。应用场景自然语言处理:大模型在自然语言处理领域的应用尤为突出。它们能够创作出高质量、流畅的文本,广泛应用

行业资讯
大模型密算
大模型密算是一种通过加密技术保护数据和模型在训练、推理等环节中的安全性和隐私性的技术。以下是大模型密算的关键技术和应用案例:1.大模型密算的关键技术数据加密:数据密态流转:通过软硬件结合的可信隐私:用户认证:支持轻量化远程认证,用户在网页访问时就可以完成远程认证,不需要额外的操作步骤。2.大模型密算的未来趋势隐私保护:数据安全和隐私:随着数据安全和隐私保护法规的日益严格,大模型密算技术将成为大模型应用的必备技术,确保数据在全生命周期内的安全性和合规性。高效计算:优化技术:通过混合精度训练、大批量训练、模型压缩等技术,提升大模型的训练和推理效率,降低计算资源需求。跨领域应用:多方数据融合:大模型密算技术将促进多方数据跨领域、跨行业的高效融合,进一步激发大模型的能力,推动大模型在更多垂直行业的应用。计算技术,实现数据在大模型托管和推理等环节的密态流转,保护模型资产、数据安全和用户隐私。模型加密:模型密态托管:模型提供方可以将模型加密后托管在平台上,一键完成云上密态部署,保护模型资产不被泄漏和盗用

行业资讯
自训练大模型一体机
数据集。部分高端机型还会配备高速网络接口,便于多台设备协同训练更大规模的模型。在软件层面,自训练大模型一体机预装了完整的机器学习开发环境。这包括主流的深度学习框架,以及各种模型优化工具和算法库。系统的影响,响应速度更快,使用体验更流畅。另一个重要优势是长期使用成本。虽然初期购置费用较高,但避免了持续支付的云服务费用。对于需要长期、频繁使用大模型的企业或研究机构来说,一体机方案往往更具经济性。用户还可以根据实际需求灵活调整训练策略,不必受限于云服务商提供的固定配置。自训练大模型一体机近年来,人工智能技术快速发展,大语言模型展现出惊人的能力。这些模型能够理解并生成自然语言,完成翻译、写作、编程等多种任务。然而,训练和使用这些大模型通常需要依赖云计算服务,这对数据隐私、使用成本和网络稳定性都提出了挑战。自训练大模型一体机就是为了解决这些问题而出现的新型解决方案。自训练大模型一体机是一种将硬件设备与人工智能训练框架深度整合的独立系统。它集成了高性能计算单元、大。这些处理器专门针对矩阵运算等机器学习常见计算任务进行了优化,能够有效处理海量参数的计算需求。存储系统则采用高速固态硬盘与大容量机械硬盘的组合,既满足训练时快速读取数据的要求,又能存储庞大的模型参数和训练

行业资讯
大模型预训练
大模型预训练是大模型训练过程中的关键环节。让模型学习到广泛的语言知识、语义理解能力和各种模式,以便在后续的微调或直接应用中能够更好地适应各种具体任务,如文本生成、问答、翻译等。关键步骤数据收集与预处理收集海量数据:从多种渠道收集大量的文本数据,来源涵盖互联网文章、书籍、新闻报道、学术论文、社交媒体等,以覆盖各种领域和主题,为模型提供丰富的语义信息。例如训练一个通用语言大模型,可能会收集数十亿甚至大规模数据中发现模式和规律。常见的预训练任务包括语言模型任务,即预测文本序列中的下一个单词或字符;以及掩码语言模型任务,随机掩盖输入文本中的一些单词或字符,让模型预测这些被掩盖的内容。数据源采样与平衡。同时,可根据需要扩充词表,如添加常见汉字等,以提高模型对特定语言或领域的适应性。模型选择与架构搭建选择合适的预训练模型基座:模型架构在自然语言处理任务中表现出色,具有高效的特征提取和表示能力,能够为预训练提供良好的基础。设计与优化模型结构:加入注意力机制的优化,如多查询注意力机制、快速注意力机制,以及位置嵌入策略,以加速训练并提高模型性能。预训练过程无监督学习:采用无监督学习的方式,让模型自动从

行业资讯
大模型训练
大模型训练是一种机器学习的方法,通过训练大规模的模型来提高训练速度和减少训练时间。在训练过程中,通常使用并行计算的方法来加速训练。同时,为了处理大规模的数据和模型,需要使用更高效的算法和优化技术,例如数据并行、模型并行、流水线并行和张量并行等。此外,大模型训练还需要考虑存储和网络通信的问题,例如如何有效地存储和传输大规模的数据和模型。在训练过程中,需要使用更多的计算资源和存储资源,因此需要更高效地管理和调度这些资源。随着深度学习和大数据技术的发展,大模型训练已经成为机器学习领域的重要研究方向之一。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二,帮助客户将场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出

行业资讯
大模型相关技术
大模型相关技术涵盖基础架构与算法、模型训练与优化、数据处理与管理、算力支撑、多模态融合以及安全与伦理等多方面技术内容,各方面技术相互配合共同助力大模型的构建、训练、应用及发展。以下是一些常见的大模型方法,如多人标注、标注验证等,提高标注的准确性和一致性。算力支撑技术高性能计算芯片:专用芯片的并行计算能力,能够加速模型的训练和推理过程,在处理大规模矩阵运算等深度学习任务时具有明显的优势,是大模型相关技术:基础架构与算法技术预训练与微调技术:先在大规模无监督数据上进行预训练,让模型学习到通用的语言知识和模式,然后在特定任务的有监督数据上进行微调,使模型能够快速适应各种不同的下游任务,如情感分析、机器翻译等,提高了模型的泛化能力和在特定任务上的性能。模型训练与优化技术分布式训练技术:由于大模型的参数规模巨大,单机训练难以满足计算和存储需求,因此需要采用分布式训练技术,将模型的训练训练和部署的重要硬件基础。云计算与边缘计算融合:云计算提供强大的计算资源和存储能力,适合大规模的模型训练和数据处理;边缘计算则将计算能力推向网络边缘,靠近数据源和用户,能够实现低延迟、高实时性的模型推理
猜你喜欢

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...