ai大模型在银行智能营销领域

智能精准营销
营销模型;结合隐私计算安全引入多方数据,丰富用户特征维度,有效开展精细化运营;采用营销知识图谱,实现业务知识沉淀,实现对公用户精准营销。多种人工智能技术全方位帮助企业唤醒沉睡用户、锁定高潜目标、形成星环科技依托数据科学平台Sophon Base、隐私计算平台Sophon P²C、图数据库StellarDB等产品工具,打造智能金融精准营销解决方案。通过机器学习洞悉客户特征、形成用户画像,建立精准精准营销信息、预测营销方案效果。配合业务部门调整营销对象和营销方案,降低营销成本的同时,提高公域/私域、APP、公众号/服务号、短信资讯等各类营销手段的转化率, 终实现提升客户响应率、产品推荐成功率的目标。

ai大模型在银行智能营销领域 更多内容

行业资讯
营销模型
营销模型是指将模型技术应用于营销领域,通过对海量数据的学习和分析,能够生成各种营销相关的内容、策略和建议,从而帮助企业更高效地进行营销活动的一种技术手段。营销模型应用场景内容生成:可以生成多维度信息的综合分析,生成定制化的营销方案,包括营销目标设定、策略规划、渠道选择、活动策划等,为企业的营销活动提供全面的指导和建议。客户服务与沟通:客户服务场景中,营销模型可以辅助客服人员更好地与客户进行沟通和交流。例如,自动生成客服回复话术,解答客户常见问题,提供个性化的解决方案等,提高客户服务质量和效率,增强客户满意度和忠诚度。营销模型优势提高效率和降低成本:自动化生成营销内容和方案,满足不同用户的个性化需求,提高用户的参与度和购买意愿,提升营销的投资回报率。促进创新和竞争力:挖掘数据中的潜在信息和创意灵感,为营销活动带来新的思路和方法,推动营销创新。帮助企业激烈的市场竞争中脱颖而出,保持竞争优势。各种形式的营销内容,如文案、图片、视频等。例如,根据产品特点和目标受众,自动生成吸引人的广告文案、产品介绍、社交媒体帖子等文字内容;或者生成高质量的产品图片、宣传海报、视频广告等视觉内容,提高营销素材的
模型AI是指使用大量数据和计算资源来训练高级人工智能AI模型的技术。随着数据的大量增长和计算能力的提高,AI系统的性能也不断提高。模型AI的目标是提高AI系统的表现,使其更加适应各种复杂的。然而,模型AI的培训和推理需要大量的计算资源和时间。模型AI通常需要强大的硬件基础设施和优化的软件环境才能运行。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技行业内首先提出行业大模型情况和任务。模型AI通常使用深度学习框架,来构建和训练模型。这些框架提供了强大的工具和库,使研究人员能够更容易地处理规模数据集,构建复杂的神经网络结构,并进行高效的计算。模型AI的应用非常广泛应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用语言模型”训练/微调,得到“满足自身业务特点的领域语言模型”;第二
行业资讯
AI模型算法
AI模型算法是当前人工智能领域的一个重要研究方向,涉及到多个方面,包括模型架构、训练技术、微调方法、以及特定领域的应用等。模型,也称为基础模型,是指具有大量参数和复杂结构的机器学习模型,能够(LargeLanguageModel)通常是具有规模参数和计算能力的自然语言处理模型。算法脆弱性:随着AI模型进入各行业的应用探索阶段,算法的脆弱性和漏洞成为不可忽视的问题。模型微调:模型微调是一种常见的方法,它利用预训练模型的强大能力,同时还能够适应新的数据分布。处理海量数据、完成各种复杂的任务,如自然语言处理、计算机视觉、语音识别等。超大模型:超大模型模型的一个子集,它们的参数量远超过大模型,能够提供更强大的性能和更广泛的应用。语言模型语言模型
行业资讯
领域模型
领域模型是一种针对特定领域或行业的规模语言模型,通过训练规模语料库来提高特定领域的表现。随着模型技术的快速发展,领域模型已经成为推动人工智能发展和企业数字化转型的重要力量。结合模型持续开发和训练工具及向量数据库,星环科技率先推出了金融和数据分析两款领域模型,并成功实现了AI助理企业落地的愿景。金融模型星环“无涯”是一款面向金融量化领域的生成式语言模型,具备超大规模的参数集合,构建立体的归因解释体系。金融领域模型还能够从时间和空间、深度和广度等多个方面扩展投资研究的视角,实现全新的智能智能投研范式。另一款领域模型数据分析模型SoLar星环“求索”,它具备量。该模型采用上百万研报、公告、政策、新闻等高质量的自然语言文本进行预训练,并基于图数据库和深度图推理算法技术进行二次预训练,形成了规模高质量的金融类事件训练指令集。相较于通用模型,金融模型更加擅长处理金融量化领域各类问题,包括政策和研报分析、新闻解读、事件总结和演绎推理等方面,具备强大的理解和生成能力。该模型能够全面复盘、传播和推演股票、债券、基金、商品等多种市场事件,并生成另类的策略因子
近日,中国信通院正式发布《金融行业大规模预训练模型技术和应用评估方法第1部分:银行业》标准。星环科技凭借规模预训练模型领域的积累和洞察,积极参与了《金融行业大规模预训练模型技术和应用评估方法第1、办公、审查等场景的应用,明确银行业大模型数据资源、开发部署、运维管理和服务应用方面的技术能力,为银行业大模型技术研发者和选型者提供评估参考规范,推动银行业大模型健康发展。当前以模型为代表的新一代人工智能模型维护方面的实践经验,为模型的持续优化和迭代提供了一些策略和方法。《金融行业大规模预训练模型技术和应用评估方法第1部分:银行业》标准是银行业大模型标准,主要用于规范银行业大模型客服、营销、反诈),旨在为企业打通从人工智能基础设施建设到数据、人工智能等研发应用的完整链条,加速人工智能对产业赋能进程。基于无涯模型,星环知识平台TKH打造了无涯·问知、无涯·问数、无涯·金融、无涯·工程等AI打造资源共享、互利共赢、国际融通的“语料生态圈”,推动模型技术更广泛的应用场景中落地生根;作为中立的技术提供方加入由上海人工智能实验室联合中央广播电视总台、人民网、国家气象中心、中国科学技术
金融场景模型:重塑金融行业新格局数字化浪潮汹涌的当下,金融行业正经历着深刻变革,而金融场景模型的出现,无疑成为推动这场变革的关键力量。它宛如一把神奇的钥匙,开启了金融领域智能化、高效化的全新大门。一、深度剖析金融场景模型金融场景模型,是专门针对金融领域复杂业务场景打造的人工智能模型。它并非普通的AI模型,而是融合海量金融数据、先进算法与强大算力的结晶。通过对金融市场历史数据、经济指标场景模型则能根据金融行业的风险度量标准,精确计算出各种风险指标,为金融机构提供专业、可靠的风险预警。二、多元应用场景,赋能金融全流程(一)智能投顾,开启个性化投资时代投资领域,金融场景模型的应用正建议。与通用模型相比,金融场景模型具有鲜明的独特优势。它对金融专业知识的理解和运用更加深入,能够准确处理金融领域特有的术语、业务逻辑和风险评估方式。风险评估中,通用模型可能只是泛泛分析,而金融的投资组合;而对于临近退休、追求稳健收益的投资者,模型则会侧重于推荐债券、大额存单等低风险产品。这种个性化的投资服务,让投资者能够复杂的金融市场中找到最适合自己的投资路径。(二)精准营销,提升客户
,其中引人注目的就是基金推荐的智能化。随着金融行业数字化和智能化转型的加速,一家全国性、综合类、创新型证券公司敏锐地意识到了AI技术精准营销方面的潜力。他们已经公募基金产品销售领域取得了显著成效,但深知利用海量基础数据方面仍有很大的提升空间。为了进一步扩展精准营销的场景覆盖深度、实时性和范围,公司需要借助成熟的AI算法能力,将智能化应用扩展到私募及资管产品等领域。正是这一背景下,星环科技与该,通过对数据进行筛选和加工、多维度特征提取,建立模型、训练模型、部署模型等,终通过机器学习模型预测未来购买某产品的客户名单,达到精准营销的目的。挑战或问题:·短时间内完成客户数据平台和人工智能平台的基金推荐走向智能金融行业中,人工智能正以惊人的速度推动创新的边界。从智能风控到智能客服,AI技术金融领域的应用日益广泛,为行业带来了变革的新风。如今,AI技术正引领金融行业走向智能化的新篇章提高公司的盈利能力。第三,星环科技与该证券公司合作开发的基金销售智能推荐应用不仅限于证券行业,也适用于金融行业的其他产品营销领域。经过实际数据对模型的优化,该应用可以推广应用。第四,通过与星环科技的
行业资讯
AI模型
用户数据。这对于数据隐私和安全提出了挑战,需要合理的数据使用和保护措施。AI模型许多领域都有着广泛的应用。例如,自然语言处理领域模型能够实现更加准确和流畅的文本生成、机器翻译和问答系统;AI模型,又称为规模AI模型、大型神经网络模型,是指参数数量庞大的人工智能模型,通常由数以亿计的参数组成。这些模型通常由深度学习算法训练而成,具有相对较高的准确性和复杂性。随着硬件计算能力的不断计算机视觉领域模型能够实现更准确的图像分类、目标检测和图像生成;推荐系统领域模型能够更好地理解用户兴趣和需求,提供个性化的推荐服务。模型时代的到来,给软件开发行业带来了巨大的变革,企业需要分布式图数据库StellarDB,能够赋予模型“长期记忆”,打破通用模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出提升,以及训练数据集的不断扩大,AI模型的应用和研究越来越受到关注。AI模型具有以下几个特点:高度复杂性:AI模型拥有大量的参数,可以对更加复杂的问题建模和学习。相比于传统的机器学习算法,模型
行业资讯
AI模型底座
AI模型底座:智能时代的“数字地基”人工智能技术快速发展的今天,AI模型底座正悄然成为支撑智能时代的"数字地基"。这个看似专业的名词,实际上与每个人的生活息息相关。从手机里的语音助手,到街头的引擎。当前,AI模型底座已经多个领域展现其价值。医疗领域,它帮助医生更快更准确地诊断疾病;教育领域,它为学生提供个性化的学习方案;工业生产中,它优化生产流程,提高效率。这些应用不仅提高了社会运行效率,也改变着人们的生活方式。展望未来,AI模型底座的发展将朝着更智能、更普惠的方向迈进。随着技术的进步,它将变得更加"聪明",能够处理更复杂的任务;同时,它也将变得更加"亲民",让更多人能够享受到AI带来的便利。智能交通系统,再到医院的AI辅助诊断,背后都离不开AI模型底座的支撑。AI模型底座是一个复杂的系统工程,主要由三核心要素构成:算法框架、计算能力和数据资源。算法框架如同大脑的神经网络,决定着AI的思考方式;计算能力好比肌肉,提供强大的运算支持;数据资源则是养分,让AI不断学习成长。这三者相互配合,共同构建起AI模型的坚实基础。技术特征方面,AI模型底座展现出三特点:强大的泛化能力
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。