大模型文本训练方式
并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通
大模型文本训练方式 更多内容

行业资讯
大模型训练语料
大模型训练语料是指用于训练人工智能大模型的文本数据集合。特点大规模性:大模型通常需要海量的语料来学习丰富的语言知识和语义信息,以提高模型的泛化能力和性能。一般来说,训练数据规模越大,模型能够学习到的语言模式和特征就越丰富。多样性:涵盖多种类型的文本,如新闻、小说、论文、诗歌、社交媒体帖子、百科知识等,有助于模型学习不同风格、主题和语境下的语言表达方式,从而更好地应对各种自然语言处理任务。高质量质量和标注准确性,可直接用于特定任务的模型训练或作为预训练数据的一部分。书籍、文献和论文:包括各种专业书籍、学术文献、研究论文等,这些文本数据经过专业编辑和审核,质量较高,蕴含着丰富的专业知识和深度的语言表达,对于训练具有专业领域知识的大模型非常有价值,但需要注意版权问题。社交媒体数据:社交媒体平台上的用户生成内容,反映了当下社会热点、用户情感和各种生活场景,能够为模型提供更贴近实际应用的语言样本,但数据的噪声较大,需要进行有效的处理和筛选。企业数据:一些企业拥有大量的内部数据,如客服记录、产品描述、用户评论等,这些数据与企业的业务和用户需求密切相关,可用于训练针对特定行业或领域的大模型,以提高

行业资讯
大模型训练语料
大模型训练语料是指用于训练大模型的一系列文本、语音或其他模态的数据。以下是关于大模型训练语料的具体介绍:来源互联网公开数据:如新闻网站、博客、论坛、社交媒体等平台上的文本内容,具有规模大、更新快,具有权威性和准确性,对于特定领域的大模型训练具有重要价值,如训练法律大模型时,政府发布的法律法规文件是重要的语料来源。企业内部数据:企业在日常运营过程中积累的大量数据,如客户数据、业务文档、交易记录等,经过整理和加工后可用于训练特定行业的大模型,如金融机构可利用客户交易数据训练金融风险预测模型。特点大规模:通常需要数十亿到数千亿个tokens,以提供足够的信息让模型学习语言的模式和规律。多样性:来自、话题多样等特点,能为模型提供丰富的语言表达方式和最新的知识信息。学术文献和研究报告:涵盖各个学科领域的专业知识,内容具有权威性、准确性和深度,有助于模型学习到系统的专业知识和前沿的研究成果。书籍和电子书各种不同的来源和领域,涵盖了不同的主题、风格、语言表达方式和知识类型,使模型能够适应各种不同的输入和任务。高质量:需具备准确性、一致性、连贯性等特点,尽量减少错误、噪声和重复内容,以确保模型学习到正确

行业资讯
大模型训练语料库
大模型训练语料库是指专门为训练大模型而收集、整理和存储的大规模文本、语音、图像等多模态数据的集合,是大模型学习和训练的基础。以下是具体介绍:特点规模巨大:通常包含数十亿甚至数千亿个数据单元,如单词。数据分割:将数据划分为训练集、验证集和测试集,通常按照一定的比例进行划分,如80%的训练集、10%的验证集和10%的测试集,用于模型的训练、调优和评估。作用提供知识储备:语料库中的丰富数据为大模型提供了广泛的知识储备,使模型能够学习到不同领域的专业知识、文化背景、语言习惯等,从而更好地理解和处理各种输入文本,并生成准确、有意义的输出内容。提升模型性能:直接影响大模型的性能和泛化能力,一个全面、多样、高质量的语料库能够训练出在各种任务和场景中表现出色的模型,使其能够适应不同的输入和输出需求,并具有较强的鲁棒性和稳定性。支持特定领域应用:针对特定领域构建的语料库可以使大模型更好地适应该领域的专业接触到不同领域、不同风格、不同主题的知识和表达方式。质量要求高:需具备准确性、一致性、连贯性等特点,尽量减少错误、噪声和重复内容,以确保模型学习到正确和有用的知识。高质量的语料能够提供准确、一致的信息

行业资讯
大模型训练语料
大模型训练语料是指用于训练大模型的大量文本、语音、图像等多模态数据,其规模、质量和多样性对大模型的性能和效果至关重要。以下是具体介绍:来源与构成来源广泛:包括互联网公开数据,如新闻网站、社交媒体、语法、语义等语言知识,以及各个领域的专业知识和常识,帮助模型理解和处理输入文本。提升性能:直接影响大模型的性能和泛化能力,高质量、全面、多样的语料库能够训练出在各种任务和场景中表现出色的模型。塑造风格行业的专业数据,如医疗领域的病历、医学文献,金融领域的财务报告、交易数据等,可使模型在特定领域表现更出色。特点与要求大规模:通常需要数十亿甚至更多的数据单元,以让模型学习到足够丰富的语言模式和知识,但也要注意避免数据冗余。高质量:应具备准确性、一致性、连贯性等特点,避免错误、噪声和重复内容,以确保模型学习到正确和有用的知识。多样性:涵盖不同领域、主题、风格、语言表达方式和文化背景,有助于提高模型的泛化能力和鲁棒性,使其能更好地适应各种不同的输入和任务需求。时效性:需要及时更新,以反映最新的语言用法、知识和社会现象,使模型能够生成符合当前实际情况的输出。作用与意义知识储备:为大模型提供丰富的词汇

行业资讯
大语言模型训练
大语言模型训练是指使用大规模数据对语言模型进行训练,以捕捉更丰富的语义和语法结,生成更高质量的文本。大语言模型训练需要大量的文本进行训练。传统的语言模型训练往往使用小规模数据集,如数百万个句子或几十个GB的文本。而大语言模型训练则使用更大规模的数据集,如数十亿个句子或数百GB的文本。这些数据包括各种类型的文本,如新闻、百科、小说、社交媒体等,以便涵盖尽可能多的语言特征和应用场景。大语言模型训练单元数、学习率等,以取得佳的性能和效果。语言模型训练在自然语言处理和人工智能领域有着广泛的应用。例如,可以用于机器翻译、文本摘要、对话生成和智能问答等任务。此外,大语言模的训练还可以用于生成文本,如自动技术和工具的不断发展为大语言模型训练提供了坚实的基础。大语言模型训练还需要合适的模型结构和超参数设置。常用的模型结构包括循环神经网络和变种以及自注意力机制。同时,还需要调整模型的超参数,如层数、隐藏作诗、小说写作和对话机器人等。大模型持续开发和训练工具为了满足企业应用大语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的大模型持续开发和训练工具

行业资讯
大模型预训练
大模型预训练是指在大量未标注的文本数据上进行的初始训练过程,旨在使模型学习到丰富的语言结构和模式。这一过程对于大模型(如LLM)很重要,能够帮助模型构建起对语言的理解基础,从而在后续的微调或特定任务中表现更佳。从零预训练一个自己的大模型:这通常涉及使用大规模文本数据集,通过自监督学习方法让模型学习到语言的内在规律。预训练的目标是使模型能够理解语义、语法以及上下文关系。大模型训练流程:包括了数据,NSP)等任务来指导模型学习。高效训练技术:为了加速大模型的预训练过程并提高其性能,研究者们开发了一系列技术,如分布式计算、混合精度训练、梯度累积等策略。大模型预训练是一个复杂且重要的步骤,它奠定了准备、模型架构设计、损失函数定义、优化算法选择等多个环节。预训练阶段会使用诸如掩码语言建模(MaskedLanguageModeling,MLM)、预测下文(NextSentencePrediction模型后续应用的基础。通过在海量数据上的无监督学习,大模型能够掌握广泛的语言知识,并为解决各种自然语言处理任务做好准备。

行业资讯
大模型预训练
大模型预训练是大模型训练过程中的关键环节。让模型学习到广泛的语言知识、语义理解能力和各种模式,以便在后续的微调或直接应用中能够更好地适应各种具体任务,如文本生成、问答、翻译等。关键步骤数据收集与预处理收集海量数据:从多种渠道收集大量的文本数据,来源涵盖互联网文章、书籍、新闻报道、学术论文、社交媒体等,以覆盖各种领域和主题,为模型提供丰富的语义信息。例如训练一个通用语言大模型,可能会收集数十亿甚至大规模数据中发现模式和规律。常见的预训练任务包括语言模型任务,即预测文本序列中的下一个单词或字符;以及掩码语言模型任务,随机掩盖输入文本中的一些单词或字符,让模型预测这些被掩盖的内容。数据源采样与平衡训练提供良好的基础。设计与优化模型结构:加入注意力机制的优化,如多查询注意力机制、快速注意力机制,以及位置嵌入策略,以加速训练并提高模型性能。预训练过程无监督学习:采用无监督学习的方式,让模型自动从上百亿的文本数据。数据清洗:去除数据中的噪声,如广告、重复内容、格式错误、低质量或不完整的文本等,保证数据的质量和纯净度,使模型能够更有效地学习有用信息。分词与标记化:将文本切分为便于模型处理的序列

行业资讯
大模型语料训练
大模型语料训练是大语言模型构建和优化过程中的关键环节,以下是其具体介绍:训练前的准备数据收集:从多种来源广泛收集数据,如互联网的新闻、博客、论坛,学术文献库,书籍,以及特定行业的专业数据库等。收集编码等。数据标注:对于一些需要特定任务训练的模型,如情感分类、命名实体识别等,需要对数据进行标注。标注可以由人工完成,也可以采用半自动化的方式,利用一些预训练模型和工具进行辅助标注。标注的质量和准确性对模型的训练效果至关重要。训练过程选择训练框架和算法:根据模型的特点和需求选择合适的框架。同时,选择适合的训练算法,以优化模型的参数。将语料向量化:把清洗和标注好的文本语料转化为模型能够处理的向量形式。根据评估结果,对模型进行优化和调整,如调整超参数、增加或减少训练数据、改进模型架构等,以提高模型的性能和泛化能力。训练后的处理模型压缩和优化:训练好的大模型通常具有庞大的参数和较高的计算复杂度,为了,通常采用词嵌入技术,将单词映射到低维向量空间中。模型训练:将向量化的语料输入到选定的模型架构中,通过大量的计算和迭代,不断调整模型的参数,使模型能够学习到语料中的语言知识、语义理解和语言生成能力

行业资讯
如何训练大模型?
训练大模型是一个复杂的过程,涉及多个步骤和技术。以下是训练大模型的一般步骤和关键技术:数据收集与预处理:首先需要收集大量的无标签数据,这些数据可以来自互联网上的文本资源,如网页、新闻、博客、社交媒体一阶段,模型会学习语言的结构和语义信息,通过自监督学习或无监督学习的方式,从海量文本数据中提取出有用的特征表示。微调:针对具体的下游任务,使用有标签的数据对预训练模型进行微调。通过调整模型的部分参数,使其能够更好地适应特定任务的文本数据,从而提高在任务上的性能。并行策略:在大模型训练的过程中,通常会使用数据并行、张量并行和流水线并行等并行策略,以提高训练效率和扩展性。有监督学习(SFT)、奖励模型训练(RW)与强化学习(PPO):大模型的训练过程通常包括有监督学习、奖励模型训练和强化学习三个阶段。有监督学习阶段包括无监督学习和有监督训练,以训练出语言模型的基座和对话能力。使用开源工具和框架:可以使用开源的大模型训练工具,它支持对主流的大模型进行预训练、指令微调和DPO。训练参数配置:配置训练参数,如批处理大小、学习率、优化器、学习率调度器等,以优化模型训练过程。模型保存与测试:训练完成后,保存
猜你喜欢

星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...

行业资讯
基于数据安全网关的跨境安全流通方案
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...

行业资讯
常见的图数据库应用场景有哪些?
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...

行业资讯
什么是时空数据库?
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
金融、医疗知识图谱平台
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...

行业资讯
分布式隐私计算平台
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...

行业资讯
银行图数据库应用场景有哪些?
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...

行业资讯
图数据库有哪些特点?
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...

行业资讯
国产化替代升级实践
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...

行业资讯
数据要素安全流通服务
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...