ai llm

星环大模型运营平台
星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。

ai llm 更多内容

什么是大型语言模型(LLM)?大型语言模型(LLM)是一种人工智能(AI)算法,它使用深度学习技术和海量数据集来理解、总结、生成和预测新内容。生成式人工智能一词也与LLM密切相关,事实上,LLM是用于自然语言处理(NLP)应用中,即用户输入自然语言查询以生成结果。LLM是人工智能中语言模型概念的演变,它极大地扩展了用于训练和推理的数据。反过来,它也大大提高了人工智能模型的能力。虽然对于训练数据集需要多大并没有一个公认的数字,但一个LLM通常至少有10亿个或更多的参数。为什么LLM对企业越来越重要?随着人工智能的不断发展,它在商业环境中的地位越来越重要。这体现在对LLM和机器学习工具的使用和概念之间的关系。然后,通过自监督学习的形式进行训练和微调。在这一阶段,会进行一些数据标注,帮助模型更准确地识别不同的概念。接下来,LLM会通过转换器神经网络过程进行深度学习。转换器模型架构能让LLM利用自我关注机制理解和识别单词与概念之间的关系和联系。该机制能够为给定项目(称为标记)分配一个分数,通常称为权重,以确定两者之间的关系。一旦LLM经过训练,就有了一个可以用于实际目的的人工智能基础
LLM模型是一个通过大量文本数据训练的深度学习模型。LLM模型可以生成自然语言文本,也能够理解语言文本含义。具体来说,LLM模型可以用于处理多种自然语言任务,例如文本分类、问答以及对话等。由于其能力在自然语言处理领域的广泛应用,LLM模型被视为进一步发展人工智能的重要途径之一。LLM模型的训练过程通常使用大量的文本数据,例如互联网上的文章、新闻、社交体数据等。通过这些数据的训练,模型可以从中学习到语言的结构、语法规则、上下文信息等。这样学习使得模型能够生成符合自然语言规则的文本,并能够理解人类语言的含义。在文本生成方面,LLM可以生成各种类型的文本,如文章、评论、故事等。更进一步,LLM可以根据给定的前提或问题来生成响应,从而备对话能力。这种生成式模型的应用非常广泛,例如智能助手、自动回复系统等。除了文本生成,LLM模型还可以用于语言理解任务。通过输入一段自然语言的文本,模型可以理解文本的含义,并进行相应处理。例如,可以用于情感分析,对一段文本的积或消极情感进行分类。LLM模型的成功离不开深度学习技术的发展。深度学习模型具有强大的表达能力和泛化能力,能够从大量数据中学到更高层次的特征
大型语言模型(LLM)是指采用深度学习算法训练巨型自然语言处理模型。LLM的特点是能够处理大量的文本数据,从而具有很强的自然语言理解生成能力。LLM可以通过学习大规模语料库中的统计规律和模式,从而实现对自然语言的理解和生成。与传统的基于规则的自然语言处理技术相比,LLM能够更好地应对自然语言的多变性和复杂性,因为它不需要事先编写冗长的规则集来处理语言的各种变体和结构。相反,LLM通过学习大量的语料库,自主地学习自然语言中的各种规律和模式,从而能够更准确地理解和生成自然语言。目前,LLM已经成为自然语言处理领域的关键技术,被广泛应用于机器翻译、本摘要、对话系统、语音识别等领域,不仅能够提高深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融大模型Infinity、大数据分析大模型SoLar“求索”,促进金融分析和大数据分析的平民化。星
大型语言模型(LargeLanguageModel,简称LLM)是一种基于深度学习的自然语言处理(NLP)技术,LLM大模型通常基于神经网络模型,特别适合处理大规模的文本数据,可以发现语言文字中的规律,并根据提示自动生成符合这些规律的内容。LLM模型通常拥有数十亿到数万亿个参数,能够处理各种自然语言处理任务,如自然语言生成、文本分类、文本摘要、机器翻译、语音识别等。LLM大模型的应用非常泛,通过预训练和微调的方式,可以用于生成文本,有很强的语言表达能力,能够生成流畅、连贯的句子,并且在许多自然语言处理任务中取得了很好的效果。LLM大模型还被广泛应用于机器翻译任务。通过使用大规模的双语对齐数据进行预训练,LLM大模型可以在源语言和目标语言之间建立起一个中间表示空间,从而实现高质量的翻译。相比传统的基于统计的机器翻译模型,LLM大模型能够更好地处理长句子、复杂的语法结构和上下文信息,从而提升翻译的准确性和畅度。此外,LLM大模型还可以应用于问答系统的构建。通过将问题和上下文输入到LLM大模型中,可以有效地提取上下文中的答案,并生成有逻辑结构和连贯性的回答。这种基于LLM大模型的问答系统
行业资讯
LLM大语言模型
LLM,全称LargeLanguageModel,是一种大型的语言模型,旨在理解和生成自然语言文本,并尝试回答各种自然语言问题、提供有关信息和建议。LLM通过对大量文本数据进行训练,学习了如何理解和生成文本,从而为用户提供准确、高效、有用的服务。LLM的核心是一个深度学习模型,通常采用神经网络架构。这些模型具有强大的学习和预测能力,可以处理各种自然语言任务,如文本分类、翻译、问答、文本生成等。LLM的应用非常广泛,它可以用于各种自然语言处理领域,如智能客服、智能助手、机器翻译、自然语言理解、文本生成等。LLM还可以用于各种领域的数据分析和挖掘,如金融、医疗、法律、科技等。此外,LLM还可以用于各种自然语言处理系统的开发和优化,如语音识别、自然语言理解和生成等。虽然LLM具有很多优点和应用,但也存在一些问题和挑战。首先,LLM需要大量的计算资源和数据来进行训练和优化,这使得其开发和维护成本很高。其次,LLM可能存在一些偏见和错误,这可能源于训练数据的选择和模型的架构。此外,LLM的理解和生成能力还需要进一步提高,以便更好地应对各种自然语言任务。LLM是一种非常有前途和潜力的技术,它可
行业资讯
大模型LLM
大型语言模型(LLM,LargeLanguageModel)是一种基于深度学习技术的语言处理模型,其核心是通过对大量语料库的学习,来理解和生成自然语言文本。LLM被广泛应用于自然语言处理、语音识别、机器翻译等领域,是当前人工智能领域的重要研究方向之一。LLM的主要特点包括:大规模数据:LLM的训练数据通常来自于互联网、文献、书籍、新闻等多种渠道,数据量达到数十亿甚至更多。通过对这些数据的训练,LLM可以掌握丰富的语言知识和信息。深度学习技术:LLM采用深度学习技术,通过多层的神经网络结构,对语言文本进行编码和解码,实现自然语言的理解和生成。自回归和预训练:LLM通常采用自回归模型和预训练方法。自回归模型使得LLM可以逐词生成文本,而预训练方法则通过对大量无监督数据进行训练,使得LLM可以更好地理解和生成自然语言文本。生成高质量文本:由于LLM学习了大量的语言知识和信息,因此可以生成高质量的文本,包括摘要、翻译、创作等。同时,LLM还可以根据用户输入的上下文信息,进行智能问答、情感分析等任务。LLM的应用非常广泛,包括:自然语言处理:LLM被广泛应用于自然语言处理任务,如文本分类、实体
行业资讯
LLM大模型
LLM大模型是指基于大量数据集和复法构建的机器学习模型。这种模型通常需要使用多个参数和变量,以便追踪和分析各个数据点或输入。LLM大模型可以用于各种任务,如自然语言处理、图像识别、语音识别和推荐系统等。在实际应用中,LLM大模型需要高度优化的软件架构和处理能力,以处理大量数据和实现快速训练和推理。在构建LLM大模型时,需要从数据的特征工程和预处理开始,并使用度学习算法进行模型的训练和优化。对于非常大的数据集,还需要使用分布式计算进行训练,并采用高效的数据并行算法实现模型的分布式推理。由于LLM大模型的规模和复杂性,需要更多的注意和测试,以确保模型的准确性和效率。对于任何一项任务,构建并调整模型都需要经验丰富的机器学习专家和领域专家的合作。LLM大模型作为机器学习技术的前沿应用,已经在各种行业和领域中拥有广泛的应用。为帮助企业构建自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具“长期记忆”,打破通用大模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融大模型Infinity、大数据分析大
行业资讯
人工智能LLM
人工智能LLM(LargeLanguageModel)是一种基于深度学习的大型语言模型,有强大的自然语言处理能力。通过学习海量的文本数据,LLM能够理解和生成自然语言的文本,实自然语言的智能处理。它可以应用于自动回复、文本分类、情感分析、机器翻译等领域,为人们提供更好的语言交互和理解服务。由于大型语言模型的出现,LLM在自然语言处理领域备受关注,并且不断推动着人工智能技术的进步。人工智能LLM的功能和应用不仅限于理解和生成自然语言文本,它还能够帮助进行智能问答、信息提取、摘要生成等任务。深度学习算法,LLM能够模拟人类的语言处理能,从而对复杂的语义和上下文进行理解和推理。人工智能LLM的发展离不开大数据和强大的计算能力。通过处理海量的文本数据,LLM能够学习和握大量的语言模式和知识,并能够根据数据进行自我训练和改进。同时,现代计算机的高性能和分布式计算技术也为LLM的训练和推理提供了重要支持,使其能够在相对较短的时间内处理和分析大规模文本数据。人工智能LLM作为一项重要的人工智能技术,正在不断引领自然语言处理的进步。随着研究的不断深入和技术的不发展,LLM有望进一步提升自然语言处理的
大型语言模型(LargeLanguageModel,LLM)是一种通过机器学习技术基于大规模语言文本数据训练而来的模型,大型语言模型LLM可以对自然语言进行处理和生成,如文本的自然语言生成、文本的自然语言理解和翻译等。通常情况下,大型语言模型LLM需要使用大规模的文本数据进行预训练,以提高模型的性能。在预训练完成后,LLM模型可以继续进行微调,以适应特定的任务场景或应用场景。这种预训练和微调的方式使得LLM模型能够在不同领和任务中具备相对较好的适应性和泛化能力。LLM的研究和用领域非常广泛,其中包括情感分析、机器翻译、智能问答、阅读理解和信息检索等。以语言理解为例,LLM模型可以对自然语言进行深入的理解和分析,包括词汇、句法和语义等方面。与传统的自然语言处理方法相比,LLM模型可以自主地从海量的文本数据中学习和提取语言的特征,避免了传统方法中需要人工定义特征的缺陷,也提高了处理效率和准确率。星环大型语言模型LLM相关产品为帮助企业构建自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...