llm微调训练集

行业资讯
大模型微调
数据集是大模型微调训练的基石,其质量直接影响着模型的性能。准备高质量的数据集是一项复杂而关键的工作,涵盖数据收集、清洗、标注等多个重要环节。数据收集是第一步,需要从各种数据源获取相关数据。数据源的选择确保标注质量,通常需要制定明确的标注规则和标准,并对标注人员进行培训。同时,还可以采用多轮审核的方式,对标注结果进行检查和修正。训练实操:开启优化之旅在完成了策略选择和数据集准备后,就进入了微调训练的训练模型的强大泛化能力,实现“站在巨人的肩膀上”进行更高效的学习。探索微调训练的奥秘明确策略:全参数还是部分参数在大模型微调训练的起始阶段,选择合适的微调策略至关重要,其中全参数微调与部分参数微调是解锁大模型:从训练到落地的进阶指南大模型微调:开启定制化智能时代在大模型的发展历程中,微调技术的出现是一个重要的里程碑。大模型微调,是指在已经训练好的大规模预训练模型的基础上,针对特定的任务或数据集性能。部分参数微调则是另一种思路,它只选择性地更新模型中的某些权重,就好比只对大厦的关键区域进行改造升级。这种方式的优点是资源消耗少,训练速度快,能够在有限的资源下快速完成微调。数据集准备:基石的打磨
llm微调训练集 更多内容

行业资讯
大模型微调
数据集是大模型微调训练的基石,其质量直接影响着模型的性能。准备高质量的数据集是一项复杂而关键的工作,涵盖数据收集、清洗、标注等多个重要环节。数据收集是第一步,需要从各种数据源获取相关数据。数据源的选择确保标注质量,通常需要制定明确的标注规则和标准,并对标注人员进行培训。同时,还可以采用多轮审核的方式,对标注结果进行检查和修正。训练实操:开启优化之旅在完成了策略选择和数据集准备后,就进入了微调训练的训练模型的强大泛化能力,实现“站在巨人的肩膀上”进行更高效的学习。探索微调训练的奥秘明确策略:全参数还是部分参数在大模型微调训练的起始阶段,选择合适的微调策略至关重要,其中全参数微调与部分参数微调是解锁大模型:从训练到落地的进阶指南大模型微调:开启定制化智能时代在大模型的发展历程中,微调技术的出现是一个重要的里程碑。大模型微调,是指在已经训练好的大规模预训练模型的基础上,针对特定的任务或数据集性能。部分参数微调则是另一种思路,它只选择性地更新模型中的某些权重,就好比只对大厦的关键区域进行改造升级。这种方式的优点是资源消耗少,训练速度快,能够在有限的资源下快速完成微调。数据集准备:基石的打磨

行业资讯
大模型微调流程
微调过程中的超参数,如学习率、批量大小、训练轮数、优化器等。这些参数的选择需要通过实验来确定,以找到最适合当前任务和数据集的组合。执行微调:将训练数据输入到模型中,通过梯度下降等优化算法,根据任务数据大模型微调流程包含明确任务与目标、选基底大模型、准备数据集、选目标函数、微调模型、迭代调整与更新、评估性能以及应用部署这几个主要步骤。大模型微调一般可分为以下步骤:1.明确任务与目标确定具体的应用一个合适的预训练大模型作为基底模型。3.准备数据集收集数据:根据任务需求收集相关的数据,如对于文本分类任务,需要收集带有分类标签的文本数据;对于机器翻译任务,需要收集源语言和目标语言对应的文本数据等。数据预处理:对收集到的数据进行清洗、去噪、重复数据删除等操作,确保数据的质量。然后根据所选大模型的要求,对文本进行分词、编码等预处理操作,并将数据划分为训练集、验证集和测试集。4.选择目标函数根据监督模型最后一层增加投影层,并根据具体的回归或分类任务选择相应的损失函数,如均方误差损失、交叉熵损失等。5.微调模型加载预训练模型:使用相应的库和工具加载选定的预训练模型及对应的分词器等。配置微调参数:定义

行业资讯
大模型微调
数据集是大模型微调训练的基石,其质量直接影响着模型的性能。准备高质量的数据集是一项复杂而关键的工作,涵盖数据收集、清洗、标注等多个重要环节。数据收集是第一步,需要从各种数据源获取相关数据。数据源的选择确保标注质量,通常需要制定明确的标注规则和标准,并对标注人员进行培训。同时,还可以采用多轮审核的方式,对标注结果进行检查和修正。训练实操:开启优化之旅在完成了策略选择和数据集准备后,就进入了微调训练的训练模型的强大泛化能力,实现“站在巨人的肩膀上”进行更高效的学习。探索微调训练的奥秘明确策略:全参数还是部分参数在大模型微调训练的起始阶段,选择合适的微调策略至关重要,其中全参数微调与部分参数微调是解锁大模型:从训练到落地的进阶指南大模型微调:开启定制化智能时代在大模型的发展历程中,微调技术的出现是一个重要的里程碑。大模型微调,是指在已经训练好的大规模预训练模型的基础上,针对特定的任务或数据集性能。部分参数微调则是另一种思路,它只选择性地更新模型中的某些权重,就好比只对大厦的关键区域进行改造升级。这种方式的优点是资源消耗少,训练速度快,能够在有限的资源下快速完成微调。数据集准备:基石的打磨

行业资讯
大模型微调流程
微调过程中的超参数,如学习率、批量大小、训练轮数、优化器等。这些参数的选择需要通过实验来确定,以找到最适合当前任务和数据集的组合。执行微调:将训练数据输入到模型中,通过梯度下降等优化算法,根据任务数据大模型微调流程包含明确任务与目标、选基底大模型、准备数据集、选目标函数、微调模型、迭代调整与更新、评估性能以及应用部署这几个主要步骤。大模型微调一般可分为以下步骤:1.明确任务与目标确定具体的应用一个合适的预训练大模型作为基底模型。3.准备数据集收集数据:根据任务需求收集相关的数据,如对于文本分类任务,需要收集带有分类标签的文本数据;对于机器翻译任务,需要收集源语言和目标语言对应的文本数据等。数据预处理:对收集到的数据进行清洗、去噪、重复数据删除等操作,确保数据的质量。然后根据所选大模型的要求,对文本进行分词、编码等预处理操作,并将数据划分为训练集、验证集和测试集。4.选择目标函数根据监督模型最后一层增加投影层,并根据具体的回归或分类任务选择相应的损失函数,如均方误差损失、交叉熵损失等。5.微调模型加载预训练模型:使用相应的库和工具加载选定的预训练模型及对应的分词器等。配置微调参数:定义

行业资讯
大模型微调流程
微调过程中的超参数,如学习率、批量大小、训练轮数、优化器等。这些参数的选择需要通过实验来确定,以找到最适合当前任务和数据集的组合。执行微调:将训练数据输入到模型中,通过梯度下降等优化算法,根据任务数据大模型微调流程包含明确任务与目标、选基底大模型、准备数据集、选目标函数、微调模型、迭代调整与更新、评估性能以及应用部署这几个主要步骤。大模型微调一般可分为以下步骤:1.明确任务与目标确定具体的应用一个合适的预训练大模型作为基底模型。3.准备数据集收集数据:根据任务需求收集相关的数据,如对于文本分类任务,需要收集带有分类标签的文本数据;对于机器翻译任务,需要收集源语言和目标语言对应的文本数据等。数据预处理:对收集到的数据进行清洗、去噪、重复数据删除等操作,确保数据的质量。然后根据所选大模型的要求,对文本进行分词、编码等预处理操作,并将数据划分为训练集、验证集和测试集。4.选择目标函数根据监督模型最后一层增加投影层,并根据具体的回归或分类任务选择相应的损失函数,如均方误差损失、交叉熵损失等。5.微调模型加载预训练模型:使用相应的库和工具加载选定的预训练模型及对应的分词器等。配置微调参数:定义

行业资讯
大模型微调流程
微调过程中的超参数,如学习率、批量大小、训练轮数、优化器等。这些参数的选择需要通过实验来确定,以找到最适合当前任务和数据集的组合。执行微调:将训练数据输入到模型中,通过梯度下降等优化算法,根据任务数据大模型微调流程包含明确任务与目标、选基底大模型、准备数据集、选目标函数、微调模型、迭代调整与更新、评估性能以及应用部署这几个主要步骤。大模型微调一般可分为以下步骤:1.明确任务与目标确定具体的应用一个合适的预训练大模型作为基底模型。3.准备数据集收集数据:根据任务需求收集相关的数据,如对于文本分类任务,需要收集带有分类标签的文本数据;对于机器翻译任务,需要收集源语言和目标语言对应的文本数据等。数据预处理:对收集到的数据进行清洗、去噪、重复数据删除等操作,确保数据的质量。然后根据所选大模型的要求,对文本进行分词、编码等预处理操作,并将数据划分为训练集、验证集和测试集。4.选择目标函数根据监督模型最后一层增加投影层,并根据具体的回归或分类任务选择相应的损失函数,如均方误差损失、交叉熵损失等。5.微调模型加载预训练模型:使用相应的库和工具加载选定的预训练模型及对应的分词器等。配置微调参数:定义

行业资讯
大模型微调流程
微调过程中的超参数,如学习率、批量大小、训练轮数、优化器等。这些参数的选择需要通过实验来确定,以找到最适合当前任务和数据集的组合。执行微调:将训练数据输入到模型中,通过梯度下降等优化算法,根据任务数据大模型微调流程包含明确任务与目标、选基底大模型、准备数据集、选目标函数、微调模型、迭代调整与更新、评估性能以及应用部署这几个主要步骤。大模型微调一般可分为以下步骤:1.明确任务与目标确定具体的应用一个合适的预训练大模型作为基底模型。3.准备数据集收集数据:根据任务需求收集相关的数据,如对于文本分类任务,需要收集带有分类标签的文本数据;对于机器翻译任务,需要收集源语言和目标语言对应的文本数据等。数据预处理:对收集到的数据进行清洗、去噪、重复数据删除等操作,确保数据的质量。然后根据所选大模型的要求,对文本进行分词、编码等预处理操作,并将数据划分为训练集、验证集和测试集。4.选择目标函数根据监督模型最后一层增加投影层,并根据具体的回归或分类任务选择相应的损失函数,如均方误差损失、交叉熵损失等。5.微调模型加载预训练模型:使用相应的库和工具加载选定的预训练模型及对应的分词器等。配置微调参数:定义

行业资讯
大模型微调流程
微调过程中的超参数,如学习率、批量大小、训练轮数、优化器等。这些参数的选择需要通过实验来确定,以找到最适合当前任务和数据集的组合。执行微调:将训练数据输入到模型中,通过梯度下降等优化算法,根据任务数据大模型微调流程包含明确任务与目标、选基底大模型、准备数据集、选目标函数、微调模型、迭代调整与更新、评估性能以及应用部署这几个主要步骤。大模型微调一般可分为以下步骤:1.明确任务与目标确定具体的应用一个合适的预训练大模型作为基底模型。3.准备数据集收集数据:根据任务需求收集相关的数据,如对于文本分类任务,需要收集带有分类标签的文本数据;对于机器翻译任务,需要收集源语言和目标语言对应的文本数据等。数据预处理:对收集到的数据进行清洗、去噪、重复数据删除等操作,确保数据的质量。然后根据所选大模型的要求,对文本进行分词、编码等预处理操作,并将数据划分为训练集、验证集和测试集。4.选择目标函数根据监督模型最后一层增加投影层,并根据具体的回归或分类任务选择相应的损失函数,如均方误差损失、交叉熵损失等。5.微调模型加载预训练模型:使用相应的库和工具加载选定的预训练模型及对应的分词器等。配置微调参数:定义

行业资讯
大模型微调流程
微调过程中的超参数,如学习率、批量大小、训练轮数、优化器等。这些参数的选择需要通过实验来确定,以找到最适合当前任务和数据集的组合。执行微调:将训练数据输入到模型中,通过梯度下降等优化算法,根据任务数据大模型微调流程包含明确任务与目标、选基底大模型、准备数据集、选目标函数、微调模型、迭代调整与更新、评估性能以及应用部署这几个主要步骤。大模型微调一般可分为以下步骤:1.明确任务与目标确定具体的应用一个合适的预训练大模型作为基底模型。3.准备数据集收集数据:根据任务需求收集相关的数据,如对于文本分类任务,需要收集带有分类标签的文本数据;对于机器翻译任务,需要收集源语言和目标语言对应的文本数据等。数据预处理:对收集到的数据进行清洗、去噪、重复数据删除等操作,确保数据的质量。然后根据所选大模型的要求,对文本进行分词、编码等预处理操作,并将数据划分为训练集、验证集和测试集。4.选择目标函数根据监督模型最后一层增加投影层,并根据具体的回归或分类任务选择相应的损失函数,如均方误差损失、交叉熵损失等。5.微调模型加载预训练模型:使用相应的库和工具加载选定的预训练模型及对应的分词器等。配置微调参数:定义
猜你喜欢
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...