AIGC大模型微调

星环模型运营平台
星环模型运营平台(Sophon LLMOps)是星环科技推出的企业级模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。

AIGC大模型微调 更多内容

模型高效微调是通过参数高效微调技术,如加性微调、选择性微调、重参数化微调及混合微调等方法,在减少计算成本和训练时间的同时,提升模型在下游任务中的性能表现,使其能更好地适应各种特定应用场景。高效微调单个预训练模型适应多种任务,无需为每个任务训练多个模型,提高了模型的通用性和可扩展性。应用案例自然语言处理:如情感分析、文本分类、机器翻译等任务,通过高效微调可使模型在特定领域的文本数据上表现更优,为机器人:针对特定行业或领域的知识和问题,对模型进行微调,使其能够更准确地理解用户咨询并提供专业的解答和建议,提高智能客服和聊天机器人的服务质量和效率。的优势节省计算资源:传统全参数微调计算成本高,而高效微调只调整小部分参数,降低了对计算资源的需求。缩短训练时间:减少了需训练的参数数量,从而加快模型训练速度,让研究人员和开发者能更快速地进行实验和迭代,尝试不同模型、数据集和技术。提升模型性能:在有限的数据和计算资源下,高效微调可使模型更好地适应特定任务,避免过拟合等问题,提高模型在下游任务中的性能表现。便于多任务适配:可通过集成任务特定参数,使
AIGC模型是一种基于深度学习技术的自然语言处理模型AIGC模型使用规模的语料库进行训练,可以自动从大量的文本数据中学习语言的语法、语义和上下文信息。AIGC模型采用了多层的神经网络结构,通过反向传播算法进行训练,可以用于多种自然语言处理任务,如文本分类、情感分析、命名实体识别等。AIGC模型是一种非常强大的自然语言处理工具,可以广泛应用于自然语言处理、自然语言生成、智能客服、智能学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库推荐等多个领域。但是,由于该模型需要大量的计算资源和数据资源进行训练,因此其训练和部署成本较高,需要专业的技术和团队支持。模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发模型。星环科技作为国内领先的数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的模型,星环科技推出了机器
日前,科技创新和产业研究综合服务平台亿欧TE发布《2023企业AIGC商业落地应用研究报告》。星环科技凭借在模型领域的深耕布局和技术实力,成功入选其AIGC商业落地产业图谱2.0“行业大模型90%的企业开始了数字化转型的设计规划,这意味着数字资产、数据驱动、业务数字原生程度大幅加深,AIGC可成活的土壤越牢固。作为一家企业级数据基础软件开发商,星环科技致力于为行业提供模型应用构建的和开发、提示工程、模型微调模型上架部署到模型应用编排和业务效果对齐的全链路流程,从而实现针对模型的数据和分析的持续提升。同时星环科技还推出了星环无涯金融模型Infinity、数据分析一系列工具,以及在擅长的领域研发领域基础模型,助力企业抓住模型时代的新机遇。为了帮助企业用户基于模型构建应用,星环科技推出了模型持续提升和持续开发工具SophonLLMOps,为用户打通从数据接入模型SoLar“求索”两领域模型。其中,无涯是一款面向金融量化领域、超大规模参数量的生成式语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解和生成能力,支持股票、债券、基金
行业资讯
AIGC模型
AIGC(ArtificialIntelligenceGeneratedContent)模型是指利用人工智能技术自动生成内容的大型模型,这些内容可以是文本、图片、音频、视频甚至3D模型等多种形式。AIGC模型是基于人工智能技术,通过在规模数据集上训练得到的模型。它们具有强大的生成能力,可以根据用户的指令或需求,自动生成各种形式的内容。这些模型的特点包括:多模态生成:AIGC模型不仅能够生成文本内容,还能生成图片、音频、视频等多种形式的内容,实现跨模态的生成。高度定制化:用户可以根据自己的需求,对AIGC模型进行定制化训练,使其生成更符合自己要求的内容。高效性:AIGC模型采用先进的算法和架构,可以在短时间内生成大量高质量的内容,提高生成效率。AIGC模型应用场景AIGC模型在多个领域都有广泛的应用场景,包括但不限于:媒体与娱乐:自动生成新闻报道、文章摘要、诗歌、小说等文本
行业资讯
模型微调
模型微调是一个复杂的过程,涉及多个步骤和技术。以下是模型微调的主要方法和步骤:数据准备选择数据集:根据目标任务选择相关性高的数据集,例如,如果目标是提高文本分类的准确性,那么应选择包含大量分类标签的文本数据。数据预处理:对数据进行清洗、分词、编码等预处理操作。选择基础模型预训练模型选择:选择一个预训练好的语言模型。设定微调参数超参数设置:设定学习率、训练轮次(epochs)、批处理大小(batchsize)等超参数。其他超参数:根据需要设定权重衰减、梯度剪切等。微调流程加载模型和权重:加载预训练的模型和权重。模型修改:根据任务需求对模型进行必要的修改,如更改输出层。损失函数和优化器:选择合适的损失函数和优化器。微调训练:使用选定的数据集进行微调训练,包括前向传播、损失计算、反向传播和权重更新。微调方法全量微调:利用特定任务数据调整预训练模型的所有参数,以充分适应新任务。参数高效微调:仅更新模型中的部分参数,显著降低训练时间和成本.微调后的评估和部署模型评估:在训练过程中,使用验证集对模型进行定期评估,并根据评估结果调整超参数或微调策略。测试模型性能:在微调完成后,使用测试集对
模型微调是一个关键步骤,用于将预训练模型适应于特定任务或领域。这一过程通常涉及以下步骤:准备阶段选择合适的预训练模型:需综合考量模型的架构、参数量以及与目标任务的适配性等因素。准备训练数据集模型参数更新,包括只更新一部分参数或通过对参数进行结构化约束,如稀疏化或低秩近似来降低微调的参数数量。提示微调、指令微调、有监督微调:指令微调是通过在由(指令,输出)对组成的数据集上进一步训练语言加速训练过程。微调实施阶段数据集划分:通常将数据集按照一定比例划分为训练集、验证集和测试集。训练集用于模型的训练,验证集用于在训练过程中调整模型的参数和评估模型的性能,测试集则用于最终评估模型的泛化能力。设定微调目标与参数调整:明确微调的具体目标,如提高模型在某一特定任务上的准确率、召回率等。同时,确定要调整的参数,包括学习率、优化器、正则化参数等。执行微调:在训练循环中依次进行前向传播、计算损失数据增强技术增加数据的多样性,提升模型的鲁棒性。常见的微调技术全参数微调和高效参数微调:全参数微调是使用预训练模型作为初始化权重,在特定数据集上继续训练,更新全部参数。高效参数微调则期望用更少的资源完成
模型预训练+微调是一种先利用大量无监督数据进行预训练,然后再根据有标注的数据进行微调的机器学习方法。目的是提高模型在训练数据上的表现,从而在复杂任务中获得更好的性能。预训练是指在大量无标注数据上对模型进行训练。这种方法利用了规模数据的特点,学习了模型中诸如词汇表达、句法结构和上下文信息等普遍规律。同时,预训练还可以为后续的微调任务提供有用的初始化参数,使得模型的表现更加出色。预训练通常有两种数据来调整模型的参数。该方法通常采用反向传播算法,使得模型能够根据有标注数据的训练样本进行反向优化微调的目的是让模型更好地适应目标任务,例如文本分类、情感分析和语音识别等。模型预训练+微调的主要优点在于能够节省大量人力和时间成本。相较于传统的深度学习方法需要大量的标注数据和训练时间,使用模型预训练+微调方法可以大大提高模型的训练效率和准确性,并使得模型能够在更广泛的应领域中发挥作用。在自然语言处理领域中,模型预训练+微调已经被用于很多任务,例如语言模型、机器翻译、问答系统和文本分类等。星环语言模型运营平台-SophonLLMOps为了帮助企业用户基于模型构建未来应用,星环科技推出了
模型微调流程包含明确任务与目标、选基底模型、准备数据集、选目标函数、微调模型、迭代调整与更新、评估性能以及应用部署这几个主要步骤。模型微调一般可分为以下步骤:1.明确任务与目标确定具体的应用场景和任务需求,例如是进行文本分类、情感分析、机器翻译,还是其他自然语言处理任务等,以便后续选择合适的数据集和评估指标。2.选择基底模型综合考虑模型的性能、可扩展性、部署成本及任务适应性等因素,选择一个合适的预训练模型作为基底模型。3.准备数据集收集数据:根据任务需求收集相关的数据,如对于文本分类任务,需要收集带有分类标签的文本数据;对于机器翻译任务,需要收集源语言和目标语言对应的文本数据等。数据预处理:对收集到的数据进行清洗、去噪、重复数据删除等操作,确保数据的质量。然后根据所选模型的要求,对文本进行分词、编码等预处理操作,并将数据划分为训练集、验证集和测试集。4.选择目标函数根据监督模型最后一层增加投影层,并根据具体的回归或分类任务选择相应的损失函数,如均方误差损失、交叉熵损失等。5.微调模型加载预训练模型:使用相应的库和工具加载选定的预训练模型及对应的分词器等。配置微调参数:定义
行业资讯
模型微调
模型微调(Fine-tuning)是指在已经预训练好的大型语言模型基础上,使用特定的数据集进行进一步的训练,以使模型适应特定任务或领域的过程。微调的核心目的是赋予模型更加定制化的功能,使其能够更好地适应特定领域的需求和特征。下是模型微调的一般步骤和方法:准备工作选择合适的预训练模型:需综合考虑模型的大小、架构以及与目标任务的适配性。准备训练数据集:对数据进行收集、标注、预处理等操作,确保在由(指令,输出)对组成的数据集上进一步训练语言模型的过程,有助于弥合模型的下一个词预测目标与遵循人类指令目标之间的差距,可视为有监督微调的一种特殊形式。数据的质量和多样性。数据应与目标任务相关,并进行清洗以去除噪声和重复数据。微调过程数据集分割与标记:通常将数据集划分为训练集、验证集和测试集。训练集用于训练模型,验证集用于调整模型参数,测试集用于评估最终模型性能。设定微调目标与参数调整:明确微调的目标和预期结果,确定要调整的参数,如学习率、优化器、正则化参数等。执行微调:在训练循环中进行前向传播、计算损失、反向传播和参数更新等步骤。可运用早停和学习
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...