开发大模型需要什么技术

星环模型运营平台
并优化了语料接入和开发、提示工程、模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。星环模型运营平台(Sophon LLMOps)是星环科技推出的企业级模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将模型落地到生产和业务中去。Sophon LLMOps打通

开发大模型需要什么技术 更多内容

数据治理需要什么技术在数字化时代,数据已成为组织的核心资产。有效的数据治理不仅关乎合规性,更是提高决策质量、优化运营效率的关键。要实现这一目标,需要一系列技术支持。本文将介绍数据治理所需的关键技术提高了数据治理的效率和准确性。数据治理是一个系统工程,需要多种技术协同工作。从基础的数据质量管理到高级的智能分析,每项技术都在数据治理生态中扮演独特角色。组织应根据自身数据规模、行业特点和合规要求,选择合适的技术组合。值得注意的是,技术只是手段而非目的,有效的数据治理还需要明确的策略、流程和人员配合。随着技术不断发展,数据治理的能力和效率将持续提高,帮助组织释放数据的价值。及其作用。数据质量管理技术数据质量是数据治理的基础。数据质量管理技术包括数据清洗、数据标准化和数据验证工具。数据清洗技术能够识别并修正数据集中的错误、重复和不一致。数据标准化技术确保不同来源的数据采用统一的格式和标准,便于后续分析。数据验证工具则通过预设规则检查数据的准确性和完整性。这些技术共同作用,确保组织使用的数据可靠、一致。元数据管理技术元数据是"关于数据的数据",描述了数据的属性、来源、用途
数据治理需要运用多种技术来确保数据的质量、安全性、一致性和有效管理,以下是一些主要技术:元数据管理技术元数据存储库:用于集中存储和管理元数据,包括数据的定义、来源、结构、关系等信息,方便用户查询和转换和清洗操作,确保数据的准确性和一致性。数据与人工智能技术数据处理框架:能够处理海量的结构化和非结构化数据,为数据治理提供更强大的计算和存储能力。人工智能技术:利用机器学习、深度学习等人工智能技术流向和转换过程,构建数据血缘关系图,清晰展示数据的来源和去向,帮助用户快速定位数据问题,评估数据质量影响范围。数据质量管理技术数据质量规则引擎:支持用户定义各种数据质量规则,如数据完整性、准确性解决问题。数据清洗工具:能够对发现的脏数据进行清洗和转换,如处理缺失值、纠正错误数据、去除重复数据等,提高数据的质量和可用性。数据安全管理技术数据加密技术:对敏感数据进行加密处理,确保数据在存储和传输过程中的保密性,即使数据被窃取,攻击者也难以获取明文信息。访问控制技术:通过身份验证、授权和访问控制列表等手段,限制对数据的访问权限,确保只有授权用户才能访问和操作相应的数据。数据脱敏技术:在不影响数据
模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发模型。星环科技作为国内领先的数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、模型微调、上架部署到应用编排行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融模型Infinity、数据分析模型SoLar“求索”,促进金融分析和数据分析的平民化。星环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化数据技术生态,推动数字经济的可持续发展。和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予模型“长期记忆”,打破通用模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直
行业资讯
模型开发
模型开发明确目标与需求,历经数据收集与预处理、选择合适架构、进行模型训练、评估优化以及部署维护等步骤,各环节紧密关联且精细操作以打造出符合应用场景、性能达标的模型。1.明确目标与需求定义应用的规模和质量对模型的性能至关重要,因此要尽量收集大量且具有代表性的数据。数据清洗:对收集到的数据进行清理,去除噪声、重复、错误或无关的数据。标注数据(如有需要):根据具体任务,对部分数据进行标注3.损失函数来调整模型的参数。分布式训练:由于模型训练数据量和计算量巨大,通常需要采用分布式训练策略,如数据并行、模型并行或混合并行。数据并行是将数据分割成多个子集,在多个计算设备上同时训练;模型并行是将性能指标判断模型是否达到预期的性能要求。除了准确性相关的指标外,还可能考虑模型的鲁棒性、泛化能力等。模型优化:如果模型性能未达到要求,需要模型进行优化。优化方法包括调整模型架构、改进数据预处理方法过程中,需要考虑模型的兼容性、性能优化、安全性等问题。模型更新与维护:随着数据的更新和应用场景的变化,模型需要不断进行更新和维护。定期收集新的数据,重新训练或微调模型,以保持模型的性能和适用性。同时,监测模型在实际应用中的性能,及时发现和解决可能出现的问题,如性能下降、安全漏洞等。
什么是LLMOps?大型语言模型运营(LLMOps)包括用于生产环境中大型语言模型运营管理的实践、技术和工具。LLMOps可以高效地部署、监控和维护大型语言模型。LLMOps与传统的机器学习运营(MLOps)一样,需要数据科学家、DevOps工程师和IT专业人员的通力合作。为什么需要LLMOps?虽然LLM在原型开发中使用起来特别简单,但在商业产品中使用LLM仍然会面临挑战。LLM开发符合组织或行业政策。星环语言模型运营平台-SophonLLMOps为了帮助企业用户基于模型构建未来应用,星环科技推出了模型持续提升和开发工具SophonLLMOps,实现领域模型的训练、上架和迭代。SophonLLMOps服务于模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。生命周期包括许多复杂的组件,如数据摄取、数据准备、提示工程、模型微调、模型部署、模型监控等等。还需要从数据工程到数据科学再到ML工程的跨团队协作和交接。它需要严格的操作规范,以保持所有这些流程的同步和协
行业资讯
模型开发
跨学科的技术积累和工程实践能力,包括数据清洗、数据处理、模型设计、训练技巧、调优方法等方面。同时,模型开发需要强大的计算资源和研发团队的支持。星环科技模型训练工具,帮助企业打造自己的专属模型星能力强:模型需要高性能计算硬件和优化软件来加速训练过程,例如GPU和分布式计算系统。复杂度高:模型的训练过程中需要处理海量的数据和参数,计算复杂度高,需要采用高效的优化算法和训练技巧。模型开发需要模型开发是指基于规模数据集或知识库,通过深度学习等技术手段训练出具有强大表现力和泛化能力的模型。随着人工智能技术的快速发展,模型开发已经成为自然语言处理、计算机视觉、语音识别等领域的重要研究方向。模型开发具有以下特点:参数规模模型通常拥有数百万甚至上亿个参数,需要规模的算力和数据来训练。训练数据量大:模型需要大量的训练数据来达到较好的效果,一般需要数百万甚至上千万的样本。计算环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于模型
模型应用开发平台是基于人工智能和数据技术的应用程序开发平台,可以帮助开发人员快速构建和部署高质量的模型应用。模型应用开发平台通常提供一系列工具和框架,使用户能够轻松处理规模的数据,并构建流程。提供可视化界面,帮助用户轻松构建模型,提供了预训练模型库,用户可以根据需要轻松引用,节省大量时间和精力。模型持续开发和训练工具为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业自身业务特点的领域语言模型。在模型训练微调阶段,SophonLLMOps工具链需要覆盖训练数据开发、推理数据开发和数据维护等工作,对语言模型所涉及的原始数据、样本数据和提示词数据进行清洗、探索和训练复杂的深度学习模型。为开发人员提供了一个集成环境,可以大大简化模型的构建和训练过程。模型应用开发平台提供各种应用工具和接口,使开发人员可以方便地构建、训练和部署模型应用,从而大加快了开发模型应用创新场景,并推出了相应的模型持续开发和训练工具——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来的、具备“新型人机交互”且“敏捷可持续迭代
什么模型模型是指模型具有庞大的参数规模和复杂程度的机器学习模型。在深度学习领域,模型通常是指具有数百万到数十亿参数的神经网络模型。这些模型需要大量的计算资源和存储空间来训练和存储,并且往往需要进行分布式计算和特殊的硬件加速技术模型的设计和训练旨在提供更强大、更准确的模型性能,以应对更复杂、更庞大的数据集或任务。模型通常能够学习到更细微的模式和规律,具有更强的泛化能力和表达能力。然而,模型也面临一些挑战。首先是资源消耗问题,模型需要大量的计算资源、存储空间和能源来进行训练和推理,对计算设备的要求较高。其次是训练时间较长,由于模型参数规模的增大,模型的训练过程会更加耗时。除此之外,模型对数据集的需求也较高,如果训练数据不充足或不平衡,可能会导致模型过拟合或性能下降。星环科技提供模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出
:如果是面向用户的应用,需要开发用户界面(UI)。根据应用场景和用户体验需求,设计简洁、直观的界面,方便用户输入和获取信息。后端开发:搭建后端服务,处理业务逻辑和数据存储。后端需要模型进行交互,将用AI模型应用开发是一个综合性的过程,涉及多个关键步骤和技术要点。1.明确应用场景和需求场景分析:深入研究目标行业和应用场景,例如医疗领域的辅助诊断、金融领域的风险评估、教育领域的个性化学习辅助等。了解场景中的业务流程、用户求和痛点,确定模型可以发挥作用的具体环节。需求定义:明确应用的功能需求,如文本生成、翻译、分类,还是问答系统等;性能需求,包括准确率、响应时间、吞吐量等;以及用户体验需求,数据的质量和数量会直接影响模型应用的效果。例如,对于情感分析应用,需要收集带有情感标签的文本数据;对于图像识别应用,需要收集大量的图像及其对应的标签。数据预处理:对收集的数据进行清洗,去除噪声、重复适配:针对特定的应用任务,使用准备好的数据对所选的模型进行微调。超参数调整:在微调过程中,需要优化模型的超参数,如学习率、批次大小、训练轮数等。通过实验和评估,找到最适合应用任务的超参数组合,以提高
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...