大模型运营服务

AI能力运营平台
Sophon MLOps是基于云原生架构构建的企业级AI能力运营平台,通过统一纳管、统一运维、统一应用、统一监控,在机器学习模型全生命周期中赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型管理成本,控制模型生产环境风险。

大模型运营服务 更多内容

星环模型运营平台TranswarpLLMOps是面向企业级用户的模型全生命周期运营管理平台,旨在帮助企业快速、高效、闭环地将模型落地至业务场景中。平台覆盖语料、模型、应用三核心要素,打通了从(ARM/x86)混合部署、资源精细化切分和调度、海量多源模型统管、全局状态监控及预警等企业级功能。SophonLLMOps提供语料知识沉淀、高质量资产共享、灵活应用开发、可持续服务运营等能力,有助于降低企业使用门槛,并支持多种开发方式,具备企业级功能和安全防护,保障数据安全和合规性。提示词工程、检索增强、智能体构建、模型推理优化、模型安全和持续提升等模型开发落地的全流程,同时兼容传统机器学习和深度学习模型,一站式满足企业全A1场景需求。此外,平台支持GPU/NPU异构算力
行业资讯
模型运营
模型运营是一个复杂的过程,涉及到多个方面,包括市场定位、技术应用、安全治理、商业模式等。模型部署与上线环境搭建:需要准备适配模型运行的硬件环境,如高性能服务器等来确保模型的计算资源。同时搭建软件进行审查,防止生成包含有害信息的内容。建立内容过滤机制,对可能出现的风险内容进行预警和拦截。合规运营:确保模型运营符合相关的法律法规,如知识产权法、消费者权益保护法等。在模型开发、部署和使用过程中,关注法律环境的变化,及时调整运营策略。成本控制与商业拓展成本核算与优化:核算模型运营的成本,包括硬件成本、软件许可成本、人力成本和数据成本等。通过优化资源配置、采用云计算等方式来降低运营成本。商业价值挖掘:根据市场需求和用户反馈,挖掘模型的商业价值。环境,包括操作系统、深度学习框架和相关依赖库。模型加载与启动:将训练好的模型加载到服务器环境中,并完成启动配置,确保模型能够正常接收和处理输入数据。这个过程可能需要考虑模型的大小、格式和输入输出接口的性能监测的结果,对硬件和软件资源进行优化。数据管理与更新数据收集与反馈:在运营过程中,收集用户与模型交互的数据,如用户输入的问题、模型生成的答案以及用户对答案的反馈等。这些数据可以用于评估模型的效果
星环语言模型运营平台-SophonLLMOpsSophonLLMOps作为一个全面的模型统一运营管理平台,旨在为用户打通从数据接入和开发、提示工程、模型微调、模型上架部署到模型应用编排和语言模型、传统机器学习、其他流程等编排成符合用户实际领域和业务需求的任务,并为客户提供服务。星环科技SophonLLMOps解决了客户三个核心痛点:首先,提供一站式工具链,帮助客户完成“通用语言模型”的训练、微调,得到满足自身业务特点的领域语言模型。其次,帮助客户将原型的语言模型应用,成功地投入到实际生产中。第三,帮助客户运营在生产中应用的语言模型,完成大模型的持续提升等。业务效果对齐的全链路流程,从而实现针对模型的“数据和分析的持续提升”。星环科技SophonLLMOps的工具链优势体现在以下几个方面:首先,SophonLLMOps拥有自己的样本仓库能力,覆盖训练数据开发、推理数据开发、数据维护等工作,对语言模型涉及的原始数据、样本数据、提示词数据做清洗、探索、增强、评估和管理等。第二,SophonLLMOps具有模型运维管理能力。除了传统MLOps的六
行业资讯
模型运营
标准。一个性能强大但用户体验不佳的模型,很难得到广泛的应用和认可。因此,通过优化交互设计、提供个性化服务等方式来提升用户体验,成为模型运营的关键任务之一。优化交互设计可以让用户更方便、更自然地与模型运营:开启智能时代的新引擎模型运营:从认知到实践模型运营,绝非简单的技术运维,而是一个综合性、系统性的工程。它涵盖了从模型训练优化、性能监控管理,到应用场景拓展、用户体验提升等多个方面了解模型运营的各个环节,掌握有效的运营策略和方法。接下来,让我们一同揭开大模型运营的神秘面纱,探索其背后的奥秘与挑战。模型运营的关键要点(一)数据管理高质量的数据能够让模型学习到更准确、更全面的知识方法进行填补。(二)模型优化模型训练是模型运营的核心环节之一,它是让模型学习数据中的模式和规律的过程。在模型训练过程中,需要使用大量的训练数据和合适的训练算法。以深度学习中的神经网络模型为例,常用的服务是提升用户体验的重要手段。模型可以根据用户的历史行为、兴趣偏好等数据,为用户提供个性化的服务。在推荐系统中,模型可以根据用户的浏览历史、购买记录等数据,为用户推荐个性化的商品、新闻、视频等内容。
模型运营是指在机器学习模型完成训练之,将其应用于实际的业务场景并不断监控和调整模型表现的过程。模型运营主要包括以下方:模型部署:将模型部署到生产环境中,使其可以处理实时数据,如将模型作为API服务实际场景中得到充分的应用和发挥,同时也可以保证模型的稳定性和可性,提高机器学习应用的价值和效果。星环语言模型运营平台-SophonLLMOps为了帮助企业用户基于模型构建未来应用,星环科技推出了模型持续提升和开发工具SophonLLMOps,实现领域模型的训练、上架和迭代。SophonLLMOps服务模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型流程等编排成符合用户实际领域和业务需求的任务,并为客户提供服务。星环科技SophonLLMOps解决了客户三个核心痛点:首先,提供一站式工具链,帮助客户完成“通用语言模型”的训练、微调,得到满足自身业务特点的领域语言模型。其次,帮助客户将原型的语言模型应用,成功地投入到实际生产中。第三,帮助客户运营在生产中应用的语言模型,完成大模型的持续提升等。
画像,并利用机器学习算法预测用户未来的行为模式。(三)个性化推荐,提升用户粘性个性化推荐是模型运营管理中最具代表性的应用之一。在信息过载的今天,用户希望能够快速找到符合自己需求的产品或服务模型模型如何赋能运营管理模型运营管理中的应用广泛且深入,宛如一位全能的“超级助手”,为企业在各个关键环节提供强大支持,助力企业在激烈的市场竞争中脱颖而出。(一)精准数据分析,洞察市场先机在数据爆炸关键指标和趋势,帮助企业精准把握市场动态和用户需求。(二)预测用户行为,实现精准运营用户行为复杂多变,难以捉摸,但对企业运营至关重要。模型通过对用户的历史行为数据、偏好数据等进行分析,构建出精准的用户通过优化推荐算法,综合考虑用户的兴趣、行为、场景等多维度因素,为用户提供个性化的推荐内容。(四)自动化运营,解放人力成本繁琐的运营工作常常耗费企业大量的人力和时间成本,而模型的出现为自动化运营提供了实时数据调整营销策略,提高营销效率和效果。提升模型运营管理能力的策略面对模型运营管理中的重重挑战,我们不能望而却步,而是要积极探索创新,采取有效的策略加以应对,为模型的稳健发展保驾护航。(一)技术创新
面临着诸多挑战,包括:语料标注和处理、提示工程、模型训练与微调、模型上架部署、应用链编排等。SophonLLMOps作为星环科技自主研发的一款综合性模型统一运营管理平台,旨在解决以上问题,为用户打通从数据接入、生成、开发和清洗、提示工程、模型训练、模型上架部署到模型应用编排和业务效果对齐的全链路流程,从而实现针对模型的“数据和分析的持续提升”。功能强大,便捷的模型运营和应用编排保护,提供权限控制、数据加密、访问日志等功能,保障用户数据的安全性和合规性。统一视角的运管工具:SophonLLMOps平台提供了模型运营管理的统一视角和管理界面,简化了模型的运维要求。该平台将。SophonLLMOps的发布标志着星环科技在模型运营管理领域的重要技术突破。作为一家专注于分布式基础软件研发的公司,星环科技将继续致力于为客户提供先进、效率、便捷的AI解决方案,推动人工智能技术的发展和应用,为构建智能化的未来贡献力量。随着AI技术的飞速发展,语言模型(LLM)已成为许多企业和组织实现其业务增长和创新的重要技术和手段。然而,要实现高效、稳定的模型数据收集、处理和模型训练、部署,并将其应用于具体的业务场景中,还
星环模型运营平台(SophonLLMOps)是星环科技推出的企业级模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将模型落地到生产和业务中去。SophonLLMOps打通并优化了语料接入和开发、提示工程、模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。
模型服务平台是一种基于云计算和人工智能技术,为用户提供模型相关服务的平台,支持模型的开发、训练、部署和应用。模型平台功能特点模型训练:提供强大的计算资源和工具,帮助用户使用海量的数据对模型进行训练,使其能够学习到各种知识和模式,以适应不同的任务和应用场景。模型部署:将训练好的模型部署到生产环境中,使其能够为用户提供实际的服务和应用。平台会提供相应的部署工具和技术支持,确保模型的稳定应用、计算机视觉应用、语音识别应用等,降低应用开发的难度和门槛,加速人工智能应用的落地和推广。模型平台优势降低技术门槛:模型训练和应用开发需要较高的技术水平和专业知识,而模型服务平台将这些复杂的技术和工具进行了封装和简化,使得普通用户和企业也能够轻松地使用模型技术,无需深入了解其底层原理和技术细节。节省成本:训练模型需要大量的计算资源和数据,成本高昂。通过使用模型服务平台,用户可以按需租用计算资源和使用模型服务,无需自行购买和维护昂贵的硬件设备和软件工具,大大降低了成本。提高效率:模型服务平台提供了一站式的服务和工具,能够帮助用户快速地进行模型训练、部署和应用开发,提高了开发效率和
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...